Skip to main content
Log in

Abstract

The box and whiskers plot (boxplot) has shown to be an effective data visualization tool in proficiency testing. The boxplot provides a quick visual summary of the considered data set . All the descriptive aspects of data reported in a round of a proficiency test can be studied with this plot. Location (through median and quartiles), spread (by means of the interquartile range), shape (position of the median in the box), and possible outliers (values beyond of the fences) are simultaneously observed with the boxplot. In this paper, we propose a modification of the inner fences of the boxplot, in such a way that they are in accordance with the approach based on the z score (standard ISO 13528) and therefore useful to recognize graphically questionable and unacceptable values in proficiency testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Morales C, Giraldo R (2020) Reference versus consensus values in proficiency testing of clinical chemistry: a statistical comparison based on laboratories results in Colombia. Accred Qual Assur 25(2):99–105

    Article  Google Scholar 

  2. ISO/IEC 17043 Conformity assessment-general requirements for proficiency testing (2010) International Organization for Standardization, Geneva, Switzerland

  3. ISO 13528 Statistical methods for use in proficiency testing by interlaboratory comparison (2015) International Organization for Standardization, Geneva, Switzerland

  4. Thompson M, Ellison S, Wood R (2006) The international harmonized protocol for the proficiency testing of analytical chemistry laboratories (IUPAC technical report). Pure Appl Chem 78(1):145–196

    Article  CAS  Google Scholar 

  5. Zhao Y, Guo D, Huang Z, Chang W, Qi X, Li Z (2016) Proficiency testing for determination of formaldehyde in leather in china. TrAC Trends Anal Chem 82:279–285

    Article  CAS  Google Scholar 

  6. Thompson M (2017) On the role of the mode as a location parameter for the results of proficiency tests in chemical measurement. Anal Methods 9(37):5534–5540

    Article  Google Scholar 

  7. Li Tingting, Zhao Haijian, Zhang Cuanbao, Wang Wei, He Falin, Zhong Kun, Yuan Shuai, Wang Zhiguo (2019) Reasons for proficiency testing failures in routine chemistry analysis in china. Lab Med 50(1):103–110

    Article  Google Scholar 

  8. Scott E, Cook G, Naysmith P (2010) The fifth international radiocarbon intercomparison (VIRI): an assessment of laboratory performance in stage 3. Radiocarbon 52(3):859–865

    Article  CAS  Google Scholar 

  9. DiFrancesco R, Rosenkranz S, Taylor C, Pande P, Siminski S, Jenny R, Morse G (2013) Clinical pharmacology quality assurance (CPQA) program: models for longitudinal analysis of antiretroviral (ARV) proficiency testing for international laboratories. Ther Drug Monit 35(5):631

    Article  Google Scholar 

  10. Chakravarty S, Mohanty A, Ghosh B, Tarafdar M, Aggarwal SG, Gupta P (2014) Proficiency testing in chemical analysis of iron ore: comparison of statistical methods for outlier rejection. Mapan 29(2):87–95

    Article  Google Scholar 

  11. Mancin M, Toson M, Grimaldi M, Barco L, Trevisan R, Carnieletto P, Ricci A (2015) Application of bootstrap method to evaluate bimodal data: an example of food microbiology proficiency test for sulfite-reducing anaerobes. Accred Qual Assur 20(4):255–266

    Article  CAS  Google Scholar 

  12. Walker M, Dovoedo Y, Chakraborti S, Hilton C (2018) An improved boxplot for univariate data. Am Stat 72(4):348–353

    Article  Google Scholar 

  13. Babura B, Adam M, Fitrianto A, Rahim A (2017) Modified boxplot for extreme data. In: AIP conference proceedings, vol 1842. AIP Publishing LLC, p 030034

  14. Barnett O, Cohen A (2000) The histogram and boxplot for the display of lifetime data. J Comput Graph Stat 9(4):759–778

    Google Scholar 

  15. Hibbert D, Gooding J (2006) Data analysis for chemistry: an introductory guide for students and laboratory scientists. Oxford University Press, Oxford

    Google Scholar 

  16. Ellison S, Barwick V, Farrant T (2009) Practical statistics for the analytical scientist. A bench guide. Royal Society of Chemistry

  17. Iglewicz B, Hoaglin D (1987) Use of boxplots for process evaluation. J Qual Technol 19(4):180–190

    Article  Google Scholar 

  18. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  19. Merker J, Devereaux K, Iafrate A, Kamel-Reid A, Kim S, Moncur J, Montgomery S, Nagarajan R, Portier B, Routbort M (2019) Proficiency testing of standardized samples shows very high interlaboratory agreement for clinical next-generation sequencing-based oncology assays. Arch Pathol Lab Med 143(4):463–471

    Article  CAS  Google Scholar 

  20. Rousseeuw P, Ruts I, Tukey J (1999) The bagplot: a bivariate boxplot. Am Stat 53(4):382–387

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramón Giraldo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales, C., Giraldo, R. & Torres, M. Boxplot fences in proficiency testing. Accred Qual Assur 26, 193–200 (2021). https://doi.org/10.1007/s00769-021-01474-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-021-01474-8

Keywords

Navigation