Skip to main content
Log in

Standard addition method with cumulative spikes: uric acid determination in human serum by voltammetry with optimized uncertainty

  • General Paper
  • Published:
Accreditation and Quality Assurance Aims and scope Submit manuscript

Abstract

This work presents a low-cost, simple and adequately reliable voltammetric alternative to the determination of uric acid (UA) in human serum by the enzymatic colorimetric standard method. UA is an organic molecule of great biomedical interest since its level is used in the diagnosis of several diseases. The quality of the electrochemical measurements was evaluated by comparing their expanded uncertainty with a target (i.e. maximum admissible) value of 0.56 mg dL−1 (one eighth of UA ranges of healthy individuals) and by analysing spiked serum and human serum samples measured by the standard method. The modified working electrode has 25 % lignin, 60 % nanocarbon, 15 % mineral oil and a copper electrodeposit. Due to the vulnerability of voltammetric techniques to matrix effects and to the small amount of serum samples, it is used the standard addition method with cumulative analyte additions for electrode calibration. The measurement uncertainty was estimated by the “bottom-up” approach where uncertainty components were combined using either the uncertainty propagation law or the numerical Kragten method. The analytical procedure was successfully applied to the analysis of physiological serums spiked at 1.0 mg dL−1, 3.0 mg dL−1, 5.0 mg dL−1, 7.0 mg dL−1 or 9.0 mg dL−1 of UA and two human serum samples. The results of analysed serums estimated by the voltammetric procedure have adequately low uncertainty and are metrologically equivalent (i.e. compatible) to the reference values estimated by the spiking process or by the standard method. Therefore, the developed voltammetric measurement procedure is a promising alternative to the standard procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu AH, Gladden JD, Ahmed M, Ahmed A, Filippatos G (2016) Int J Cardiol 213:4–7

    Article  Google Scholar 

  2. Rho YH, Zhu Y, Choi HK (2011) Sem Nephrol 31:410–419

    Article  CAS  Google Scholar 

  3. Moriwaki Y (2014) J Bioequiv Availab 6:10–17

    Article  Google Scholar 

  4. Kageyama N (1971) Clin Chim Acta 31:421–426

    Article  CAS  Google Scholar 

  5. Meites S (1965) Standard methods of clinical chemistry, 5th edn. Academic Press, New York

    Google Scholar 

  6. Sahoo P, Das S, Sarkar HS, Maiti K, Uddin MR, Mandal S (2017) Bioorg Chem 71:315–324

    Article  CAS  Google Scholar 

  7. Lu H, Li J, Zhang M, Wu D, Zhang Q (2017) Sens Actuators B Chem 244:77–83

    Article  CAS  Google Scholar 

  8. Granero AM, Pierini GD, Robledo SN, Di Nezio MS, Fernández H, Zon MA (2016) Microchem J 129:205–212

    Article  CAS  Google Scholar 

  9. Uzun D, Gündüzalp AB, Hasdemir E (2015) J Electroanal Chem 747:68–76

    Article  CAS  Google Scholar 

  10. Erden PE, Kılıç E (2013) Talanta 107:312–323

    Article  CAS  Google Scholar 

  11. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Anal Chem 87:230–249

    Article  CAS  Google Scholar 

  12. Martin CS, Dadamos TRL, Teixeira MFS (2012) Sens Actuators B Chem 175:111–117

    Article  CAS  Google Scholar 

  13. Westley C, Xu Y, Thilaganathan B, Carnell AJ, Turner NJ, Goodacre R (2017) Anal Chem 89:2472–2477

    Article  CAS  Google Scholar 

  14. Jones WB, Donati GL, Calloway CP Jr, Jones BT (2015) Anal Chem 87:2321–2327

    Article  CAS  Google Scholar 

  15. Pagliano E, Meija J (2016) Metrologia 53:829–835

    Article  Google Scholar 

  16. Joint Committee for Guides in Metrology, International Vocabulary of Metrology-Basic and General Concepts and Associated Terms (2012) VIM, JCGM 200, BIPM

  17. Ellison SLR, Williams A (2012) Eurachem/CITAC guide: Quantifying uncertainty in analytical measurement, 3rd edn, Eurachem, Europe

  18. Bettencourt da Silva RJN (2016) Talanta 148:177–190

    Article  CAS  Google Scholar 

  19. Zuo T, Jiang L, Mao S, Liu X, Yin S, Guo L (2016) Int J Cardiol 224:286–294

    Article  Google Scholar 

  20. Bettencourt da Silva RJN, Santos JR, Camões MFGF (2006) Accred Qual Assur 10:664–671

    Article  Google Scholar 

  21. Désenfant M, Priel M (2017) Measurement 95:339–344

    Article  Google Scholar 

  22. Bettencourt da Silva RJN, Camões MFGF (2010) Anal Lett 43:1257–1266

    Article  CAS  Google Scholar 

  23. Rodrigues J, Bettencourt da Silva RJN, Camões MFGF, Oliveira CM (2015) Talanta 142:72–83

    Article  CAS  Google Scholar 

  24. Miller J, Miller J (2005) Statistics and chemometrics for analytical chemistry, 5th edn. Pearson, London

    Google Scholar 

  25. Kragten J (1994) Analyst 119:2161–2166

    Article  CAS  Google Scholar 

  26. Viana AME, Bettencourt da Silva RJN, Camões MFGF (2011) Anal Chim Acta 699:161–169

    Article  Google Scholar 

  27. JCGM (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement JCGM 100:2008. BIPM, Sèvres

    Google Scholar 

  28. Bettencourt da Silva RJN, Williams A (2015) Eurachem/CITAC guide: setting and using target uncertainty in chemical measurement. Eurachem, Europe

  29. Ferraz MHC, Delgado RB (1988) In: Leão E, Corrêa EJ, Viana MB, Mota JAC (eds) Pediatria Ambulatorial, Valores de Referência para Exames Laboratoriais, 3rd edn. COOPMED, Belo Horizonte

    Google Scholar 

  30. Reid S, Sims IM, Melton LD, Gane AM (1999) Carbohydr Polym 39:369–376

    Article  CAS  Google Scholar 

  31. Dadamos TRL, Freitas BH, Gênova DHM, Espírito-Santo RD, González ERP, Lanfredi S, Teixeira MFS (2012) Sens Actuators B Chem 169:267–273

    Article  CAS  Google Scholar 

  32. Shawish HMA, Almonem KIA, Saadeh SM, Al-lham WS (2016) Measurement 78:180–186

    Article  Google Scholar 

  33. Baral A, Sarangi CK, Tripathy BC, Bhattacharya IN, Subbaiah T (2014) Hydrometal 146:8–14

    Article  CAS  Google Scholar 

  34. Huang K, Wang L, Li J, Gan T, Liu Y (2013) Measurement 46:378–383

    Article  Google Scholar 

  35. Dadamos TRL, Teixeira MFS (2009) Electrochim Acta 54:4552–4558

    Article  CAS  Google Scholar 

  36. Dryhurst G (1972) J Electrochem Soc 119:1659–1664

    Article  CAS  Google Scholar 

  37. Massart DL, Vandeginste BGM, Deming SN, Michotte Y, Kaufman L (1988) Chemometrics: a textbook. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

The laboratory of clinical analysis of the Fundação Educacional de Fernandópolis, the Fundação para a Ciência e a Tecnologia (FCT) and the Universidade Estadual Paulista (IBILCE/UNESP) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony R. L. Dadamos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadamos, T.R.L., Damaceno, A.J., Fertonani, F.L. et al. Standard addition method with cumulative spikes: uric acid determination in human serum by voltammetry with optimized uncertainty. Accred Qual Assur 23, 337–348 (2018). https://doi.org/10.1007/s00769-018-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-018-1350-8

Keywords

Navigation