Accreditation and Quality Assurance

, Volume 23, Issue 3, pp 145–175 | Cite as

Multi-residue analysis of pesticide residues in fruits and vegetables using gas and liquid chromatography with mass spectrometric detection

  • Despo Louca Christodoulou
  • Olympiada Kourouzidou
  • Militsa Hadjigeorgiou
  • Panayiota Hadjiloizou
  • Maria Constantinou
  • Panayiotis Constantinou
  • Koula Kika
  • Maria Klavarioti
General Paper


This article summarizes the results of the validation studies of a multi-residue method for the determination of pesticide residues in fruits and vegetables. The results of the monitoring control programs carried out in Cyprus during 2016 are also presented. In total, 314 samples of fruits and vegetables were analyzed for residues of, in total, 243 different pesticides. Gas chromatography and liquid chromatography coupled with mass spectrometry (GC–MS/MS and LC–MS/MS) were used to assess the levels of pesticide residues. For the extraction of the compounds the ethyl acetate extraction method with Ultra Turrax (Christodoulou et al. in J Wine Res 26:81–98, 2015a, Int J Environ Anal Chem 95:894–910, 2015b) was modified so that a quick and efficient extraction method could be applied. For the validation of the method blank samples were spiked with a solution of 203 and 101 pesticides for the LC–MS/MS and GC–MS/MS analyses, respectively, at two levels. The validation study was in accordance with DG SANTE guidelines (European Commission, Safety of the Food Chain Pesticides and biocides SANTE/11813/2017 (21–22 November 2017 Rev.0), 2017). The scope of validation included recovery, linearity, limit of quantification and precision. The measurement uncertainty was calculated using the results of proficiency tests. Out of a total of 314 analyzed samples 196 (62.4 %) were found contaminated with pesticide residues, whereas 38.5 % of the samples contained more than one pesticide. 6.7 % of the samples exceeded the MRLs of the regulation EU 396/2005. The most frequently found pesticides were cypermethrin, boscalid, imidacloprid and tebuconazole.


Pesticides Measurement uncertainty Multi-residue method LC–MS/MS GC–MS/MS 



This work was supported by the Ministry of Health of Cyprus. The authors thank the temporary staff of the Pesticide Residues Laboratory of the State General Laboratory Eleni Kyprianidou and Elena Kouppanou.


  1. 1.
    Kumari B, Kathpal TS (2009) Monitoring of pesticide residues in vegetarian diet. Environ Monit Assess. CrossRefPubMedGoogle Scholar
  2. 2.
    Bajwa U, Sandhu KS (2011) Effect of handling and processing on pesticide residues in food—a review. J Food Sci Technol. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bempah CK, Donkor AK (2011) Pesticide residues in fruits at the market level in Accra Metropolis, Ghana, a preliminary study. Environ Monit Assess. CrossRefPubMedGoogle Scholar
  4. 4.
    Tucker AJ (2008) Trends Food Sci Technol 19:S49–S55CrossRefGoogle Scholar
  5. 5.
    Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC, Official Journal of the European Union, 16/3/2005, L70/1Google Scholar
  6. 6.
    Edmonds J (2013) Key statistics for citrus growers. Citrus Growers’ Association of Southern Africa, DurbanGoogle Scholar
  7. 7.
    Khan IA, Parveen TZ, Ahmed M (2007) Int J Agric Biol 9(6):905–908Google Scholar
  8. 8.
    EFSA Journal (2017) The 2015 European Union report on pesticide residues in food.
  9. 9.
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ (2003) J AOAC Int 86(2):412–431PubMedGoogle Scholar
  10. 10.
    Lehotay SJ, de Kok A, Hiemstra M, Van Bodegraven P (2005) J AOAC Int 88(2):595–614PubMedGoogle Scholar
  11. 11.
    Pihlström T, Blomkvist G, Friman P, Pagard U, Österdahl BG (2007) Anal Bioanal Chem 389(6):1773–1789CrossRefPubMedGoogle Scholar
  12. 12.
    Agüera A, López S, Fernández-Alba AR, Contreras M, Crespo J, Piedra L (2004) J Chromatrogr A 1045(1–2):125–135CrossRefGoogle Scholar
  13. 13.
    Picó Y, Blasco C, Font G (2004) Mass Spectrom Rev 23(1):45–85 (Review article) CrossRefPubMedGoogle Scholar
  14. 14.
    Jansson C, Pihlström T, Österdahl BG, Markides KE (2004) J Chromatrogr A 1023(1):93–104CrossRefGoogle Scholar
  15. 15.
    EU Reference Laboratory-FV, (2014) Accessed 10 Oct 2017
  16. 16.
    Mol HGJ, van Dam RCJ, Steijger OM (2003) J Chromatrogr A 1015(1–2):119–127CrossRefGoogle Scholar
  17. 17.
    Sannino A, Bolzoni L, Bandini M (2004) J Chromatrogr A 1036(2):161–169CrossRefGoogle Scholar
  18. 18.
    Taylor MJ, Hunter K, Hunter KB, Lindsay D, Le Bouhellec S (2002) J Chromatrogr A 982(2):225–236CrossRefGoogle Scholar
  19. 19.
    Pozo OJ, Marin JM, Sancho JV, Hernández F (2003) J Chromatrogr A 992(1–2):133–140CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Riediker S, Obrist H, Varga N, Stadler RH (2002) J Chromatrogr A 966(1–2):15–23CrossRefGoogle Scholar
  22. 22.
    Sancho JV, Pozo OJ, Zamora T, Grimalt S, Hernández F (2003) J Agric Food Chem 51(15):4202–4206CrossRefPubMedGoogle Scholar
  23. 23.
    Klein J, Alder L (2003) J AOAC Int 86(5):1015–1037PubMedGoogle Scholar
  24. 24.
    EU Reference Laboratory-FV, (2010) Accessed 10 Oct 2017
  25. 25.
    Ferrer I, García-Reyes JF, Mezcua M, Thurman EM, Fernández-Alba AR (2005) J Chromatrogr A 1082(1):81–90CrossRefGoogle Scholar
  26. 26.
    EU Reference Laboratory-FV (2010) Accessed 10 Oct 2017
  27. 27.
    Christodoulou DL, Kanari P, Hadjiloizou P, Constantinou P (2015) J Wine Res 26(2):81–98CrossRefGoogle Scholar
  28. 28.
    Christodoulou DL, Kanari P, Kourouzidou O, Constantinou M, Hadjiloizou P, Kika K, Constantinou P (2015) Int J Environ Anal Chem 95(10):894–910CrossRefGoogle Scholar
  29. 29.
    European Commission, Safety of the Food Chain Pesticides and biocides SANTE/11813/2017 (21–22 November 2017 rev.0) (2017) Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feedGoogle Scholar
  30. 30.
    ISO 13528:2015. Statistical methods for use in proficiency testing by interlaboratory comparisons, International Organization for StandardizationGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Despo Louca Christodoulou
    • 1
  • Olympiada Kourouzidou
    • 1
  • Militsa Hadjigeorgiou
    • 1
  • Panayiota Hadjiloizou
    • 1
  • Maria Constantinou
    • 1
  • Panayiotis Constantinou
    • 1
  • Koula Kika
    • 1
  • Maria Klavarioti
    • 1
  1. 1.State General LaboratoryNicosiaCyprus

Personalised recommendations