Skip to main content

ETV-ICP-OES: a useful technique for homogeneity study of trace element in metals—application to the homogeneity study of 23 elements in electrolytic copper

Abstract

Solid sampling techniques can perform multi-elemental determination on large number of samples in repeatable conditions without sample preparation, making them valuable tools for the homogeneity testing of reference materials. Even if techniques like glow discharge mass spectrometry are often used for large samples, the application to small chips was not well documented due to the small sample mass. This study compares two analytical methods for homogeneity studies of Ag, Al, As, Au, Bi, Cd, Co, Cr, Fe, In, Mg, Mn, Ni, P, Pb, Sb, Se, Si, Sn, Te, Ti, Zn and Zr in two electrolytic copper materials in the format of chips (ERM-EB074C and ERM-EB075C): (a) digestion methods: acid dissolution followed by ICP-MS or ICP-OES and (b) solid sampling method using electrothermal vaporization coupled with inductively coupled plasma optical emission spectrometry (ETV-ICP-OES). The same 10 units were analysed in 3–5 replicates by the different methods. ETV-ICP-OES was more precise than digestion methods with relative standard deviations of less than 8 % for most elements. The between-unit uncertainties determined by ETV-ICP-OES were lower than the values reported by the digestion methods. ETV-ICP-OES is a very interesting alternative to the digestion methods for large homogeneity study involving large number of trace elements. Also, the intrinsic sample inhomogeneity (minimum sample intake) was re-evaluated using the results of ETV-ICP-OES (sample intake: 3 mg) for the two materials. The minimum sample intake of several elements (e.g. Au Pb, Se and Te) was evaluated to be lower than the 10 mg reported for the two materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Pisonero J, Fernandez B, Günther DG (2009) Critical revision of GD-MS, LA-ICP-MS and SIMS as inorganic mass spectrometric techniques for direct solid analysis. J Anal At Spectrom 24:1129–1276

    Article  Google Scholar 

  2. Traub H, Czerwensky M, Matschat R, Kipphardt H, Panne U (2010) Different calibration strategies for the analysis of pure copper metal by nanosecond laser ablation inductively coupled plasma mass spectrometry. J Anal At Spectrom 25:690–696

    CAS  Article  Google Scholar 

  3. ISO Guide 34 (2009) General requirements for the competence of reference materials producers. International Organization for Standardization, Geneva

    Google Scholar 

  4. ISO Guide 35 (2006) Reference materials—general and statistical principles for certification. International Organization for Standardization, Geneva

    Google Scholar 

  5. Friese KC, Grobecker KH, Wätjen U (2001) Development of an electrothermal vaporization ICP–MS method and assessment of its applicability to studies of the homogeneity of reference materials. Fresenius J Anal Chem 370:499–507

    CAS  Article  Google Scholar 

  6. Pauwels J, Vandecasteele C (1993) Determination of the minimum sample mass of a solid CRM to be used in chemical-analysis. Fresenius J Anal Chem 345:121–123

    CAS  Article  Google Scholar 

  7. Resano M, Vanhaecke F, de Loos-Vollebregt MTC (2008) Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry—a critical review with focus on solid sampling and slurry analysis. J Anal At Spectrom 23:1450–1475

    CAS  Article  Google Scholar 

  8. Vandendriessche S, Griepink B, Strijckmans K (1992) The certification of impurities (Ag, As, Bi, Cd Co, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn) in copper, CRM 074: electrolytic copper, CRM 075: copper with added impurities. Commission of the European Communities, Luxembourg

    Google Scholar 

  9. Lange B, Meier K, Recknagel S (2003) Bericht zur Zertifizierung der Elementspurengehalte in zwei Reinstkupferproben—Zertifizierte Referenzmaterialien BAM-M385 und BAM-M386. Bundesanstalt für Materialforschung und -prüfung, Berlin. http://www.rm-certificates.bam.de/de/rm-certificates_media/rm_cert_nonferrous/rm_cert_copper/bam_m385_386rep.pdf. Accessed 26 Aug 2016

  10. ASTM E826-14 (2014) Standard practice for testing homogeneity of a metal lot or batch in solid form by spark atomic emission spectrometry. ASTM International, West Conshohocken. www.astm.org

  11. Vandendriessche S, Griepink B, Strijckmans K (1992) The certification of impurities (Ag, As, Bi, Cd, Co, Cr, Fe, Mn, Ni, Pb, Sb, Se, Sn, Te and Zn) in copper—CRM 074: electrolytic copper—CRM 075: copper with added impurities, report EUR 14055 EN ISBN 92-826-3501-5. Publications Office of the European Union, Luxembourg

  12. Pauwels J, Hofmann C, Grobecker KH (1993) Homogeneity determination of Cd in plastic CRMs using solid sampling atomic absorption spectrometry. Fresenius J Anal Chem 345:475–477

    CAS  Article  Google Scholar 

  13. Rossbach M, Grobecker KH (1999) Homogeneity studies of reference materials by solid sampling—AAS and INAA. Accred Qual Assur 4:498–503

    CAS  Article  Google Scholar 

  14. Matschat R, Dette A, Richter S, Recknagel S, Barth P (2011) Certification of a boron carbide powder reference material for chemical analysis. J Am Ceram Soc 94(11):4009–4016

    CAS  Article  Google Scholar 

  15. Hassler J, Matschat R, Richter S, Barth P, Detcheva AK, Waarloe H-J (2016) Determination of 22 trace elements in high-purity copper including Se and Te by ETV-ICP OES using SF6, NF3, CF4 and H2 as chemical modifiers. J Anal At Spectrom 31:642–657

    CAS  Article  Google Scholar 

  16. Hassler J, Barth P, Richter S, Matschat R (2011) Determination of trace elements in high-purity copper by ETV-ICP OES using halocarbons as chemical modifiers. J Anal At Spectrom 26:2404–2418

    CAS  Article  Google Scholar 

  17. Bacquart T, Linsinger TPJ (2015) The certification of trace elements mass fraction in electrolytic copper: ERM®-EB074A, B and C, report EUR 26890 EN ISBN 978-92-79-43606-2. Publications Office of the European Union, Luxembourg

  18. Bacquart T, Linsinger TPJ (2015) The certification of trace elements mass fraction in electrolytic copper: ERM®-EB075A, B and C, report EUR 26970 EN ISBN 978-92-79-43261-3. Publications Office of the European Union, Luxembourg

  19. O’Donnell G, Brynn Hibbert D (2005) Treatment of bias in estimating measurement uncertainty. Analyst 130:721–729

    Article  Google Scholar 

  20. Bonas G, Zervou M, Papaeoannou T, Lees M (2003) “SoftCRM”: a new software for the certification of reference materials. Accred Qual Assur 8:101–107

    CAS  Article  Google Scholar 

  21. Linsinger TPJ, Pauwels J, van der Veen AMH, Schimmel H, Lamberty A (2001) Homogeneity and stability of reference materials. Accred Qual Assur 6:20–25

    CAS  Article  Google Scholar 

  22. Graf U, Henning H-J, Stange K, Wilrich P-T (1987) Formeln und Tabellen der angewandten mathematischen Statistik, 2nd version Eds. Springer, Berlin

  23. Analysis of high purity copper using ETV-ICP-OES with axial plasma observation, Spectro ICP report Nr. ICP-79, Rev. 0 (2012) SPECTRO analytical instruments GmbH, Kleve. http://www.spectro.com/products/icp-oes-aes-spectrometers/arcos-inductively-coupled-plasma. Accessed 9 Mar 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bacquart.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 608 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bacquart, T., Hassler, J., Vogt, T. et al. ETV-ICP-OES: a useful technique for homogeneity study of trace element in metals—application to the homogeneity study of 23 elements in electrolytic copper. Accred Qual Assur 22, 125–139 (2017). https://doi.org/10.1007/s00769-017-1254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-017-1254-z

Keywords

  • ETV-ICP-OES
  • Homogeneity study
  • Reference material
  • Minimum sample intake
  • Solid sampling