Skip to main content

Structure analytical methods for quantitative reference applications

Abstract

The analytical methods mass spectrometry, UV/Vis, IR, Raman, Fluorometry, XRD, Mössbauer, and NMR used to elucidate chemical structure are evaluated regarding their capabilities to be used as primary analytical techniques in quantitative measurements, considering the criteria in the CCQM definition of primary methods. This includes a review of the respective measurement equations, the evaluation of the measurement uncertainty, and a discussion of evidence for the “highest metrological level”, as obtained from intercomparisons in contest with other methods. It is shown that only few methods fulfill the CCQM criteria. Quantitative NMR spectroscopy is one of them and may be considered as a potential primary method as recommended by CCQM because of being free of empirical factors in the uncertainty budget.

This is a preview of subscription content, access via your institution.

Notes

  1. Note to Eq. 19: Due to the fact that the spectra of the analyte A and the internal standard Std are processed and evaluated alike, errors may be correlated, and a covariance term may have to be included in the uncertainty budget [20].

  2. In the paper mentioned here [29] confusion arises with the formulas used to calculate the purity. It should be noted that the purity P and the purity factor f should be distinguished. Otherwise somewhere a factor of 100 is wrong as for instance in Eqs. 3 and 6. We would recomend to use the accepted symbols [30].

References

  1. Jancke H (1998) CCQM Rep 98:1–12

    Google Scholar 

  2. Jancke H (1998) Nachr Chem Tech Lab 46:720–722

    CAS  Google Scholar 

  3. Richter W (1997) Accred Qual Assur 2:354–359

    Article  CAS  Google Scholar 

  4. EURACHEM/CITAC Guide (2003) Traceability in chemical measurement, 1st edn. www.eurachem.ul.pt

  5. Milton MJT, Quinn TJ (2001) Metrologia 38:289–296

    Article  CAS  Google Scholar 

  6. Quinn TJ (1997) Metrologia 34:61–65

    Article  Google Scholar 

  7. Taylor AJ, Linforth RST (2003) Int J Mass Spectrom 223–224:179–191

    Google Scholar 

  8. De Bievre P, Peiser HS (1997) Fresenius J Anal Chem 359:523–525

    Article  Google Scholar 

  9. Rouessac F, Rouessac A (2000) Chemical analysis. Wiley, Chichester, New York, Weinheim, Brisbane, Singapore, Toronto (English edition)

    Google Scholar 

  10. Kontoyannis CG, Bourpoulos NC, Koutsoukos PG (1997) Vibrat Spectrosc 15:53–60

    Article  CAS  Google Scholar 

  11. Belozerski GN (2000) Mössbauer spectroscopy, applications. In: Lindon JC, Tranter GE, Holmes JL (eds) Encyclopedia of spectroscopy and spectrometry. Academic Press, San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo, pp 1324–1334

    Google Scholar 

  12. Favre M, Landoldt D, Hoffman K, Stratmann M (1998) Corros Sci 40:793–803

    Article  CAS  Google Scholar 

  13. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New York, London, Sydney, Toronto

    Google Scholar 

  14. Suryanarayanan R (1990) Powder Diff 5:155–159

    CAS  Google Scholar 

  15. Campbell Roberts SN, Williams AC, Grimsey IM, Booth SW (2002) J Pharm Biomed Anal 28:1149–1159

    Article  CAS  Google Scholar 

  16. Hill RJ (1993) Data collection strategies, Appendix 5.A. In: Young RA (ed) The Rietveld method, IUCr monographs on crystallography. Oxford University Press, Oxford, pp 95–101

    Google Scholar 

  17. Günther H (1995) NMR spectroscopy. Wiley, Chichester

    Google Scholar 

  18. Freeman R (1988) A handbook of nuclear magnetic resonance. Longman Scientific, Harlow

    Google Scholar 

  19. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP, OIML (1993) Guide to expression of uncertainty in measurement, 1st edn. Corrected and reprinted in 1995

  20. Hibbert DB (2003) Accred Qual Assur 8:195–199

    Article  CAS  Google Scholar 

  21. International Union of Pure and Applied Chemistry (1999) Pure Appl Chem 71:1593–1607

    Article  Google Scholar 

  22. Antignac J-P, Le BizecB, Monteau F, Andre F (2003) Anal Chim Acta 483:325–334

    Article  CAS  Google Scholar 

  23. Peplinski B, Schultze D, Wenzel J (2001) Mater Sci Forum 378–381:124–131

    Article  Google Scholar 

  24. Griffiths L, Irving AM (1998) Analyst 123:1061–1068

    Article  CAS  Google Scholar 

  25. Maniara G, Rajamoorthi K, Srinivasan R, Stockton GW (1998) Anal Chem 70:4921–4928

    Article  CAS  Google Scholar 

  26. Wells RJ, Cheung J (2001) The chemistry preprint server CPS: analchem/0103002

  27. Wells RJ, Hook JM, Al-Deen TS, Hibbert DB (2002) J Agric Food Chem 50:3366–3374

    Article  CAS  Google Scholar 

  28. Al-Deen TS, Hibbert DB, Hook JM, Wells RJ (2002) Anal Chim Acta 474:125–135

    Article  Google Scholar 

  29. Al-Deen TS, Hibbert DB, Hook JM, Wells RJ (2004) Accred Qual Assur 9:55–63

    Article  CAS  Google Scholar 

  30. Cvitas T (1996) Metrologia 33:35–39

    Article  Google Scholar 

  31. Al Deen TS (2002) Validation of quantitative nuclear magnetic resonance (QNMR) spectroscopy as a primary ratio analytical method for assessing the purity of organic compounds: a metrological approach. Dissertation, University of New South Wales, Sydney, Australia

    Google Scholar 

  32. Malz F (2003) Quantitative NMR-Spektroskopie als Referenzverfahren in der analytischen Chemie. Dissertation, Humboldt-Universität zu Berlin, Berlin, Deutschland; http://edoc.hu-berlin.de/dissertationen/malz-frank-2003-06-30/PDF/Malz.pdf

    Google Scholar 

  33. Deubner R (2004) Quantitative NMR Spektroskopie zur Reinheits bestimmung von Arzneistoffen. Dissertation, Bayerische Julius-Maximilians-Universität Würzburg, Deutschland; http://opus.bibliothek.uni-wuerzburg.de/opus/volltexte/2004/836/pdf/Dissertation_Deubner.pdf

    Google Scholar 

  34. Ottner F, Gier S, Kuderna M, Schwaighofer B (2000) Appl Clay Sci 17:223–243

    Article  CAS  Google Scholar 

  35. Alexander TG, Koch SA (1967) J Assoc Off Agric Chemists 50:676–678

    CAS  Google Scholar 

Download references

Acknowledgement

The authors thank the Federal Ministry of Economics and Labour (BMWA), the German Federation of Industrial Cooperative Research Associations “Otto von Guericke” (AiF) and the German Research Association of Medicine Manufacturers (FAH) for supporting this work within the project AiF-No. 13843 N/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Malz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jancke, H., Malz, F. & Haesselbarth, W. Structure analytical methods for quantitative reference applications. Accred Qual Assur 10, 421–429 (2005). https://doi.org/10.1007/s00769-005-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00769-005-0004-9

Keywords

  • Metrology
  • Structure analysis
  • Quantitative analysis
  • Primary methods
  • Reference methods