Advertisement

Accreditation and Quality Assurance

, Volume 9, Issue 1–2, pp 76–81 | Cite as

Validation of the RP–HPLC method for analysis of hydrochlorothiazide and captopril in tablets

  • D. Ivanovic
  • M. MedenicaEmail author
  • A. Malenovic
  • B. Jancic
Practitioner’s Report

Abstract

A rapid and sensitive reverse-phase high performance liquid chromatography (RP–HPLC) method with ultra-violet (UV) detection for a routine control of hydrochlorothiazide and captopril in tablets was developed. The chromatographic system Hewlet Packard 1100 consisted of a HP 1100 pump, HP 1100 UV–VIS detector and HP ChemStation integrator. The samples were introduced through a Rheodyne injector valve with a 20-μL sample loop. The isocratic system consisted of a Beckman Ultrasphere ODS 4.6 mm x 15 cm, 5-μm-particle column and a mobile phase containing methanol/water (45:55 v/v). The pH of the mobile phase was adjusted to 3.8 with 85% ortophosphoric acid. Quantitation was accomplished using the internal standard method. At the selected conditions, the other excipients of the tablets did not interfere in the assay of active substances. The developed RP–HPLC method was validated, so linearity, precision, accuracy, robustness, limit of quantitation and limit of detection were investigated. For the robustness test, three factors were considered: the composition of the mobile phase , the pH of the mobile phase, and temperature. With the aid of response surface metodology (RSM), it was possible to precisely define the robustness of the method.

Keywords

Validation RP-HPLC Hydrochlorothiazide Captopril Tablets 

References

  1. 1.
    Jain R, Jain CL (1991) Indian Drugs 28(8):380–382Google Scholar
  2. 2.
    Kirschbaum J, Perlman S (1984) J Pharm Sci 73(5):686–687PubMedGoogle Scholar
  3. 3.
    Owens PK, Svensson LA, Vessman J (2001) J Pharm Biomed Anal 25(3−4):453–464Google Scholar
  4. 4.
    Ling BL, Baeyens WRG, Del Castillo B, Imai K, De Moerloose P, Stragier K (1989) J Pharm Biomed Anal 7(12):1663–1670CrossRefPubMedGoogle Scholar
  5. 5.
    Ling BL, Baeyens WRG, Del Castillo B, Stragier K, Marysael H, De Moerloose P (1989) J Pharm Biomed Anal 7(12):1671–1678CrossRefPubMedGoogle Scholar
  6. 6.
    Ling BL, Baeyens WRG, Marysael H, Stragier K, De Moerloose P (1989) J Liq Chromatogr 12(16):3135–3149Google Scholar
  7. 7.
    Ito T, Matsuni Y, Kurihara H, Nambara T (1987) J Chromatogr 417(1):79–87CrossRefPubMedGoogle Scholar
  8. 8.
    Liu YC, Wu HL, Kou HS, Chen SH, Wu SM (1995) Anal Lett 28 (8):1465–1481Google Scholar
  9. 9.
    Carreras D, Imaz C, Navajas R, Garcia MA, Rodriguez C, Rodriguez A, Cortes R (1994) J Chromatogr 683 (1):195–202Google Scholar
  10. 10.
    Hillaert S, De Grauwe K, Van der Bossche W (2001) J Chromatogr A 924(1−2):439–449Google Scholar
  11. 11.
    Dollery C (1999) Therapeutic Drugs, Churchill Livingstone, EdinburghGoogle Scholar
  12. 12.
    Connors KA, Amidon GL, Stella VJ (1986) Chemical Stability of Pharmaceuticals in: A Handbook for Pharmacists. Second Edition, A Wiley–Interscience Publication, New York.Google Scholar
  13. 13.
    Fabre H (1996) J Pharm Biomed Anal 14:1125–1132CrossRefPubMedGoogle Scholar
  14. 14.
    Regonese R, Mulholland M, Kalman J (2000) J Chromatogr A 870:45–51CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • D. Ivanovic
    • 1
  • M. Medenica
    • 2
    Email author
  • A. Malenovic
    • 1
  • B. Jancic
    • 1
  1. 1.Department of Drug AnalysisFaculty of PharmacyBelgradeYugoslavia
  2. 2.Department of Physical Chemistry and Instrumental MethodsFaculty of PharmacyBelgradeYugoslavia

Personalised recommendations