Skip to main content
Log in

A new method to determine δ37Cl values of chloride in aquatic systems

Neue Bestimmungsmethode von δ37Cl-Werten an Chlorid in aquatischen Systemen

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Abstract

A new technique was developed to analyse chlorine stable isotope ratios of chloride using Purge&Trap-gas chromatography-continuous flow-isotope ratio mass spectrometry (P&T-GC-CF-IRMS). The chlorine stable isotope analysis using continuous flow technology shows good reproducible results. This technique is much faster than the classical off-line method, needs smaller sample sizes and uses no toxic or dangerous chemicals. Because of its simplicity, this technique is also more cost-effective than other methods. Due to the determination of the δ37ClSMOC value against an external standard (e.g., ISL-354) under the same preparative and chromatographic conditions, the precision and accuracy is comparable to or better than that achieved by any previous methods. This new technique allows more samples to be analysed rapidly and accurately. The P&T-GC-CF-IRMS technique will enhance the application of chlorine stable isotope ratio measurements in more research areas. It will allow the use of this analysis in studies where chlorine content is low and high precision and accuracy were important.

The method has been applied in different porewater studies to assess potential crystalline and argillaceous environments for the deposition of radioactive waste.

Zusammenfassung

Es wurde eine neue Methode zur Analyse von stabilen Chlor-Isotopenverhältnissen mithilfe von Purge&Trap-gas chromatography-continuous flow-isotope ratio mass spectrometry (P&T-GC-CF-IRMS) entwickelt. Diese Technik ist schneller als die klassische Offline-Methode, erfordert kleinere Probenvolumina und verwendet keine toxischen oder giftigen Chemikalien. Aufgrund der einfachen Methodik ist sie wesentlich kostengünstiger als die bisher verwendete Methode über Chlormethan. Aufgrund der Bestimmung des δ37ClSMOC-Wertes gegen einen externen Standard (z. B. ISL-354) unter den gleichen präparativen und chromatographischen Bedingungen ist die Präzision vergleichbar oder besser als die, welche mit bisherigen Methoden erreicht wurde. Die P&T-GC-CF-IRMS-Technik wird die Anwendung von Messungen des Chlor-Isotopenverhältnisses in mehr Forschungsbereichen verbessern und den Einsatz dieser Analyse in Studien ermöglichen, bei denen der Chlorgehalt niedrig ist und eine hohe Präzision wichtig ist.

Die Methode wurde bereits erfolgreich in verschiedenen Porenwasserstudien zur Beurteilung von möglichen kristallinen und Tongestein-dominierten Standorten zur Lagerung atomarer Abfälle eingesetzt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 Abb. 1
Fig. 2 Abb. 2

Similar content being viewed by others

Notes

  1. Waber, H.N., personal communication, University of Bern, Institute of geological science (2017).

  2. IT2, personal communication, Isotope Tracer Technologies Inc., Canada (2014).

  3. Waber, H.N., personal communication, University of Bern, Institute of geological science (2017).

  4. IT2, personal communication, Isotope Tracer Technologies Inc., Canada (2014).

References

  • Alexeeva, L.P., Alexeev, S.V., Kononov, А.М., Ma, T., Liu, Y.: Halogen isotopes (37Cl and 81Br) in brines of the Siberian Platform. Procedia Earth Planet. Sci. 13, 47–51 (2015)

    Article  ADS  CAS  Google Scholar 

  • Aschwanden, L., Camesi, L., Gaucher, E., Gimmi, T., Jenni, A., Kicza, M., Mäder, U., Mazurek, M., Rufer, D., Waber, H.N., Wersin, P., Zwahlen, C., Traber, D.: TBO Stadel-3-1: Data Report Dosier VIII—Rock Properties, Porewater Characterisation and Natural Tracer Profiles. NAGRA Arbeitsbericht NAB 22-01. NAGRA, Wettingen (2022)

    Google Scholar 

  • Banks, D.A., Green, R., Cliff, R.A., Yardley, B.W.D.: Chlorine isotopes in fluid inclusions: Determination of the origins of salinity in magmatic fluids. Geochim. Cosmochim. Acta 64(10), 1785–1789 (2000)

    Article  ADS  CAS  Google Scholar 

  • Bernal, N.F.: The Evolution of Magmatic-Hydrothermal Fluids as Recorded by Stable Cl Isotopes and Cl/Br Elemental Ratios in Geothermal Systems, Porphyry Copper and Iron-Oxide-Copper-Gold Deposits (2015). PhD thesis, University of Alberta

    Google Scholar 

  • Brand, W.A., Coplen, T.B., Vogl, J., Rosner, M., Prohaska, T.: Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure. Appl. Chem. 86(3), 425–467 (2014)

    Article  CAS  Google Scholar 

  • Coplen, T.B., Böhlke, J.K., De Bièvre, P., Ding, T., Holden, N.E., Hopple, J.A., Krouse, H.R., Lamberty, A., Peiser, H.S., Révész, K., Rieder, S.E., Rosman, K.J.R., Roth, E., Taylor, P.D.P., Vocke Jr., R.D., Xiao, Y.K.: Isotope-abundance variations of selected elements. Pure. Appl. Chem. 74(10), 1987–2017 (2002)

    Article  CAS  Google Scholar 

  • Dasgupta, P.K., Martinelango, P.K., Jackson, W.A., Anderson, T.A., Tian, K., Tock, R.W., Rajagopalan, S.: The origin of naturally occurring perchlorate: the role of atmospheric processes. Environ. Sci. Technol. 39, 1569–1575 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Eastoe, C.J., Peryt, T.M., Petrychenko, O.Y., Geisler-Cussey, D.: Stable chlorine isotopes in Phanerozoic evaporites. Appl. Geochem. 22(3), 575–588 (2007)

    Article  ADS  CAS  Google Scholar 

  • Eggenkamp, H.G.M.: δ37Cl; the geochemistry of chlorine isotopes. Geol. Ultrai. 116, 1–150 (1994). Ph.D. thesis, Utrecht University

    Google Scholar 

  • Eggenkamp, H.G.M., Coleman, M.L.: The effect of aqueous diffusion on the fractionation of chlorine and bromine stable isotopes. Geochim. Cosmochim. Acta 73(12), 3539–3548 (2009)

    Article  ADS  CAS  Google Scholar 

  • Eggenkamp, H.G.M., Bonifacie, M., Ader, M., Agrinier, P.: Experimental determination of stable chlorine and bromine isotope fractionation during precipitation of salt from a saturated solution. Chem. Geol. 433, 46–56 (2016)

    Article  ADS  CAS  Google Scholar 

  • Eichinger, F.: Matrix Porewater in Olkiluoto Bedrock from Drilling OL-KR58. Posiva Working Report, vol. 2021-03. Posiva Oy, Olkiluoto (2021)

    Google Scholar 

  • Eichinger, F., Waber, H.N., Smellie, J.A.T.: Characterisation of Matrix Porewater at the Olkiluoto Investigation Site, Finland. Posiva Working Report, vol. 2006-103. Posiva Oy, Olkiluoto (2006)

    Google Scholar 

  • Eichinger, F., Hämmerli, J., Waber, H.N., Diamond, L.W., Smellie, J.A.T.: Characterisation of Matrix Porewater and Fluid Inclusions in Olkiluoto Bedrock from Drilling OL-KR47. Posiva Working Report, vol. 2010-58. Posiva Oy, Olkiluoto (2010)

    Google Scholar 

  • Eichinger, F., Hämmerli, J., Waber, H.N., Diamond, L.W., Smellie, J.A.T.: Posiva Working report 2013, pp. 63–94 (2011)

    Google Scholar 

  • Eichinger, F., Rufer, D., Waber, H.N.: Matrix Porewater and Gases in Porewater in Olkiluoto Bedrock from Drilling OL-KR56. Posiva Working Report, vol. 2018-07. Posiva Oy, Olkiluoto (2018)

    Google Scholar 

  • Gimmi, T., Waber, H.N.: Modelling of Tracer Profiles in Porewater of Argillaceous Rocks in the Benken Borehole: Stable Water Isotopes, Chloride and Chlorine Isotopes. NAGRA Tecg. Rep., vol. 04-05. NAGRA, Wettingen (2004)

    Google Scholar 

  • Giunta, T., Ader, M., Bonifacie, M., Agrinier, P., Coleman, M.: Pre-concentration of chloride in dilute water-samples for precise δ37Cl determination using a strong ion-exchange resin: Application to rainwaters. Chem. Geol. 413, 86–93 (2015)

    Article  ADS  CAS  Google Scholar 

  • Kaufmann, R.S.: Chlorine in groundwater: Stable isotope distribution (1984). Ph.D. thesis, University of Arizona, Tucson

    Google Scholar 

  • Laaksoharju, M., Smellie, J., Tullborg, E.L., Wallin, B., Drake, H., Gascoyne, M., Gimeno, M., Gurban, I., Hallbeck, L., Molinero, J., Nilsson, A.C., Waber, H.N.: Bedrock Hydrogeochemistry Laxemar—Site Descriptive Modelling SDM-Site Laxemar. SKB Report, vol. R‑08-93. Svensk Kärnbränslehantering AB, Stockholm (2009)

    Google Scholar 

  • Li, L., Bonifacie, M., Aubaud, C., Crispi, O., Dessert, C., Agrinier, P.: Chlorine isotopes of thermal springs in arc volcanoes for tracing shallow magmatic activity. Earth Planet. Sci. Lett. 413, 101–110 (2015)

    Article  ADS  CAS  Google Scholar 

  • Liu, Y., Zhou, A., Gan, Y., Liu, C., Yu, T., Li, X.: An online method to determine chlorine stable isotopes by continuous flow isotope ratio mass spectrometry (CF-IRMS) coupled to Gasbench II. J. Cent. South. Univ. 20, 193–198 (2013)

    Article  Google Scholar 

  • Long, A., Eastoe, C.J., Kaufmann, R.S., Martin, J.G., Wirt, L., Finley, J.B.: High-precision measurement of chlorine stable isotope ratios. Geochim. Cosmochim. Acta 57(12), 2907–2912 (1993)

    Article  ADS  CAS  Google Scholar 

  • Mazurek, M., Aschwanden, L., Camesi, L., Gimmi, T., Jenni, A., Kicza, M., Mäder, U., Rufer, D., Waber, H.N., Wanner, P., Wersin, P., Traber, D.: TBO Bülach-1-1: Data Report Dosier VIII—Rock Properties, Porewater Characterisation and Natural Tracer Profiles. NAGRA Arbeitsbericht, vol. NAB 20-08. NAGRA, Wettingen (2021)

    Google Scholar 

  • NWMO: Phase 2 Initial Borehole Drilling and Testing, Ignace Area—WP04c Data Report—Porewater Extraction and Analysis and Petrographic Analysis for IG_BH01. NWMO Report, vol. APM-REP-01332-0233. NWMO, Toronto (2019)

    Google Scholar 

  • NWMO: Phase 2 Initial Borehole Drilling and Testing, Ignace Area—WP04c Data Report—Porewater Extraction and Analysis and Petrographic Analysis for IG_BH03. NWMO Report, vol. APM-REP-01332-0246. NWMO, Toronto (2021)

    Google Scholar 

  • Posiva: Palaeohydrogeochemical Data, Concepts and Interpretation for the Olkiluoto Site. Posiva Report, vol. 2021-13. Posiva Oy, Olkiluoto (2022)

    Google Scholar 

  • Rebeix, R., Le Gal La Salle, C., Jean-Baptiste, P., Lavastre, V., Fourré, E., Bensenouci, F., Matray, J.M., Landrein, P., Shouakar-Stash, O., Frape, S.K., Michelot, J.L., Lancelot, J.: Chlorine transport processes through a 2000 m aquifer/aquitardsystem. J. Mar. Pet. Geol. 53, 102–116 (2014)

    Article  CAS  Google Scholar 

  • Rosenbaum, J.M., Cliff, R.A., Coleman, M.L.: Chlorine stable isotopes: a comparison of dual inlet and thermal ionization mass spectrometric measurements. Anal. Chem. 72(10), 2261–2264 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Schilling, J.-G., Unni, C.K., Bender, M.L.: Origin of chlorine and bromine in the oceans. Nature 273, 631–636 (1978)

    Article  ADS  CAS  Google Scholar 

  • Sharp, Z.D., Barnes, J.D., Brearley, A.J., Chaussidon, M., Fischer, T.P., Kamenetsky, V.S.: Chlorine isotope homogeneity of the mantle, crust and carbonaceous chondrites. Nature 446(26), 1062–1065 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Sharp, Z.D., Shearer, C.K., McKeegan, K.D., Barnes, J.D., Wang, Y.Q.: The chlorine isotope composition of the moon and implications for an anhydrous mantle. Science 329(27), 1050–1053 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shouakar-Stash, O., Drimmie, R.J., Frape, S.K.: Determination of inorganic chlorine stable isotopes by continuous flow isotope ratio mass spectrometry. Rapid Commun. Mass. Spectrom. 19(2), 121–127 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  • Shouakar-Stash, O., Alexeev, S.V., Frape, S.K., Alexeeva, L.P., Drimmie, R.J.: Geochemistry and stable isotopic signatures, including chlorine and bromine isotopes, of the deep groundwaters of the Siberian Platform, Russia. Appl. Geochem. 22(3), 589–605 (2007)

    Article  ADS  CAS  Google Scholar 

  • Smellie, J., Pitkänen, P., Koskinen, L., Aaltonen, I., Eichinger, F., Waber, N., Sahlstedt, E., Siitari-Kauppi, M., Karhu, J., Löfman, J., Poteri, A.: Evolution of the Olkiluoto Site: Palaeohydrogeochemical Considerations. Posiva Working Report, vol. 2014-27. Posiva Oy, Olkiluoto (2014)

    Google Scholar 

  • Stotler, R.L., Frape, S.K., Shouakar-Stash, O.: An isotopic survey of δ81Br and δ37Cl of dissolved halides in the Canadian and Fennoscandian Shields. Chem. Geol. 274(1–2), 38–55 (2010)

    Article  ADS  CAS  Google Scholar 

  • Waber, H.N., Smellie, J.A.T.: Characterisation of pore water in crystalline rocks. Appl. Geochem. 23(7), 1834–1861 (2008)

    Article  ADS  CAS  Google Scholar 

  • Waber, H.N., Hobbs, M.Y., Frape, S.K.: Assessing initial conditions for chloride transport across low-permeability argillaceous rocks, Wellenberg, Switzerland. Procedia Earth Planet. Sci. 7, 875–879 (2013)

    Article  ADS  CAS  Google Scholar 

  • Wassenaar, L.I., Koehler, G.: On-line technique for the determination of the δ37 cl of inorganic and total organic cl in environmental samples. Anal. Chem. 76, 6384–6388 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Wersin, P., Aschwanden, L., Camesi, L., Gaucher, E., Gimmi, T., Jenni, A., Kicza, M., Mäder, U., Mazurek, M., Rufer, D., Waber, H.N., Zwahlen, C., Traber, D.: TBO Bözberg-1-1: Data Report Dosier VIII—Rock Properties, Porewater Characterisation and Natural Tracer Profiles. NAGRA Arbeitsbericht, vol. NAB 21-21. NAGRA, Wettingen (2022)

    Google Scholar 

  • Xiao, Y.K., Zhang, C.G.: High precision isotopic measurement of chlorine by thermal ionization mass spectrometry of Cs2Cl+ ion. Intl. J. Mass Spectrom. Ion. Process. 116(3), 183–192 (1992)

    Article  ADS  CAS  Google Scholar 

  • Xiao, Y.K., Zhou, Y., Wang, Q., Wei, H., Liu, W., Eastoe, C.J.: A secondary isotopic reference material of chlorine from selected seawater. Chem. Geol. 182(2–4), 655–661 (2002)

    Article  ADS  CAS  Google Scholar 

  • Zakon, Y., Halicz, L., Gelman, F.: Isotope analysis of sulfur, bromine, and chlorine in individual anionic species by Ion chromatography/multicollector-ICPMS. Anal. Chem. 86(13), 6495–6500 (2014)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the laboratories of Hydroisotop GmbH and Technical University Darmstadt, Institute IWAR, Material Flow Management and Resource Economy. We are also thankful to H.G.M. Eggenkamp and H.N. Waber for allowing access to reference samples.

Funding

This study was funded by AIF Project GmbH, Number: KF2285305BN3, Federal Ministry for Economic Affairs and Energy (BMWi)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegmund Ertl.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ertl, S., Eichinger, F., Pichlmaier, J. et al. A new method to determine δ37Cl values of chloride in aquatic systems. Grundwasser - Zeitschrift der Fachsektion Hydrogeologie 29, 63–71 (2024). https://doi.org/10.1007/s00767-023-00564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-023-00564-3

Keywords

Schlüsselwörter

Navigation