Advertisement

Grundwasser

, Volume 21, Issue 4, pp 321–332 | Cite as

Long-term transport behavior of psychoactive compounds in sewage-affected groundwater

  • Hang Thuy Thi Nham
  • Janek Greskowiak
  • Enrico Hamann
  • Raffaella Meffe
  • Ulrike Hass
  • Gudrun Massmann
Fachbeitrag

Abstract

The present study provides a model-based characterization of the long-term transport behavior of five psychoactive compounds (meprobamate, pyrithyldione, primidone, phenobarbital and phenylethylmalonamide) introduced into groundwater via sewage irrigation in Berlin, Germany. Compounds are still present in the groundwater despite the sewage farm closure in the year 1980. Due to the limited information on (i) compound concentrations in the source water and (ii) substance properties, a total of 180 cross-sectional model realizations for each compound were carried out, covering a large range of possible parameter combinations. Results were compared with the present-day contamination patterns in the aquifer and the most likely scenarios were identified based on a number of model performance criteria. The simulation results show that (i) compounds are highly persistent under the present field conditions, and (ii) sorption is insignificant. Thus, back-diffusion from low permeability zones appears as the main reason for the compound retardation.

Keywords

Sewage farm Long-term groundwater pollution Psychoactive drugs Transport behaviour Field scale reactive transport modelling 

Langzeittransportverhalten von psychoaktiven Substanzen in einem abwasserbeeinflussten Grundwasserleiter

Zusammenfassung

Die vorliegende Studie untersucht mit modellbasierten Methoden das Langzeitverhalten von 5 psychoaktiven Substanzen (Meprobamat, Pyrithyldion, Primidon, Phenobarbital und Phenylethylmalonamid) im Grundwasser abstromig eines ehemaligen Rieselfeldes in Berlin. Trotz der Einstellung der Abwasserverrieselung im Jahre 1980 finden sich die Substanzen noch in messbaren Konzentrationen im Grundwasser. Aufgrund der spärlichen Datenlage bezüglich (i) der historischen Konzentrationen im verdieseltem Abwasser und (ii) Abbaubarkeit und Sorptionseigenschaften, wurden mit einem Grundwasserströmung- und Transportmodell des Standorts 180 Realisationen zur Abbildung einer großen Zahl möglicher Parameterkombinationen und des Einflusses auf das Ausbreitungsverhalten pro Substanz durchgeführt. Mit Hilfe verschiedener Modellanpassungskriterien wurden die wahrscheinlichsten Szenarien identifiziert. Die Ergebnisse zeigen, dass (i) die Substanzen unter den vorliegenden Feldbedingungen extrem persistent sind und (ii) Sorption nicht signifikant ist. Die beobachtete starke Retardation der Substanzen im Aquifer scheint alleine durch eine langsame Rückdiffusion aus ehemalig kontaminierten, hydraulisch schlechtdurchlässigen Zonen unterhalb des Rieselfeldes begründet zu sein.

Notes

Acknowledgements

The field data on the psychoactive substances was provided by the Berliner Wasserbetriebe (BWB) and is greatly acknowledged. The modeling work was financed by the Ministry of Education and Training of Vietnam (MOET, DA-322). We would like to thank two anonymous reviewers for their helpful comments and suggestions to improve this manuscript.

Supplementary material

767_2016_336_MOESM1_ESM.docx (79 kb)
Nash-Sutcliffe and RMS values for all compounds and model scenarios

References

  1. Abdel-Shafy, H.I., Guindi, K.A., Tawfik, N.S.: Groundwater contamination as affected by long-term sewage irrigation in egypt. In: Al baz, I., Otterpohl, R., Wendland, C. (eds.) Efficient management of wastewater, pp. 53–63. Springer Berlin, Heidelberg (2008)CrossRefGoogle Scholar
  2. Bouwer, H.: Groundwater problems caused by irrigation with sewage effluent. J Environ Health 63, 17–20 (2000)Google Scholar
  3. Burke, V., Treumann, S., Dünnbier, U., Greskowiak, J., Massmann, G.: Sorption behavior of 20 wastewater originated micropollutants in groundwater – column experiments with pharmaceutical residues and industrial agents. J. Contam. Hydrol. 154, 29–41 (2013)CrossRefGoogle Scholar
  4. Burke, V., Richter, D., Hass, U., Dünnbier, U., Greskowiak, J., Massmann, G.: Redox-dependent removal of 27 organic trace pollutants: compilation of results from tank aeration experiments. Environ Earth Sci 71, 3685–3695 (2014)CrossRefGoogle Scholar
  5. Calisto, V., Esteves, V.I.: Psychiatric pharmaceuticals in the environment. Chemosphere 77, 1257–1274 (2009)CrossRefGoogle Scholar
  6. Chander, K., Brookes, P.C.: Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil. Soil Biol Biochem 23, 927–932 (1991)CrossRefGoogle Scholar
  7. Drewes, J.E., Heberer, T., Rauch, T., Reddersen, K.: Fate of pharmaceuticals during ground water recharge. Ground Water Monit Remediat 23, 64–72 (2003)CrossRefGoogle Scholar
  8. Ellis, J.B.: Pharmaceutical and Personal Care Products (PPCPs) in Urban Receiving Waters. Environ Pollut 144, 184–189 (2006)CrossRefGoogle Scholar
  9. Greskowiak, J., Prommer, H., Massmann, G., Nützmann, G.: Modeling seasonal redox dynamics and the corresponding fate of the pharmaceutical residue phenazone during artificial recharge of groundwater. Environ Sci Technol 40, 6615–6621 (2006)CrossRefGoogle Scholar
  10. Grünheid, S., Hübner, U., Jekel, M.: Impact of temperature on biodegradation of bulk and trace organics during soil passage in an indirect reuse system. Water Sci Technol 57, 987–994 (2008)CrossRefGoogle Scholar
  11. Halling-Sørensen, B., Nielsen, S.N., Lanzky, P.F., Ingerslev, F., Lützhøft, H.C.H., Jørgensen, S.E.: Occurrence, fate and effects of pharmaceutical substances in the environment – a review. Chemosphere 36, 357–393 (1998)CrossRefGoogle Scholar
  12. Hamann, E.: Reaktive Stofftransportmodellierung einer urbanen Grundwasserkontamination aus einem ehemaligen Rieselfeld. Doctoral thesis, Humboldt-Universität zu Berlin (2009). http://edoc.hu-berlin.de/dissertationen/hamann-enrico-2009-01-23/PDF/hamann.pdf. Accessed 16 Sept 2016Google Scholar
  13. Hass, U.: Analysis, Occurrence, and Fate of Psychoactive Compounds in an Urban Water Cycle. Doctoral thesis, Freie Universität Berlin (2012). http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000040191, Accessed 4 Nov 2015Google Scholar
  14. Hass, U., Dünnbier, U., Massmann, G., Pekdeger, A.: Simultaneous determination of psychoactive substances and their metabolites in aqueous matrices by ultrahigh-performance liquid chromatography-tandem mass spectrometry. Anal Methods 3, 902–910 (2011)CrossRefGoogle Scholar
  15. Hass, U., Dünnbier, U., Massmann, G.: Occurrence of psychoactive compounds and their metabolites in groundwater downgradient of a decommissioned sewage farm in Berlin (Germany). Environ Sci Pollut Res 19, 2096–2106 (2012a)CrossRefGoogle Scholar
  16. Hass, U., Dünnbier, U., Massmann, G.: Occurrence and distribution of psychoactive compounds and their metabolites in the urban water cycle of Berlin (Germany). Water Res. 46(18), 6013–6022 (2012b)CrossRefGoogle Scholar
  17. Heberer, T.: Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of research data. Toxicol. Lett. 131, 5–17 (2002)CrossRefGoogle Scholar
  18. Heberer, T., Mech, A., Massmann, G., Pekdeger, A., Fritz, B.: Field studies on the fate and transport of pharmaceutical residues in bank filtration. Ground Water Monit Remediat 24(2), 70–77 (2004)CrossRefGoogle Scholar
  19. Henzler, A.F., Greskowiak, J., Massmann, G.: Modeling the fate of organic Micropollutants during river bank filtration (Berlin, Germany). J. Contam. Hydrol. 156, 78–92 (2014)CrossRefGoogle Scholar
  20. Hospido, A., Carballa, M., Moreira, M., Omil, F., Lema, J.M., Feijoo, G.: Environmental assessment of anaerobically digested sludge reuse in agriculture: potential impacts of emerging micropollutants. Water Res. 44(10), 3225–3233 (2010)CrossRefGoogle Scholar
  21. Ibanez, L., Ballarín, E., Pérez, E., Vidal, X., Capellà, D., Laporte, J.R.: Agranulocytosis induced by Pyrithyldione, a sedative hypnotic drug. Eur. J. Clin. Pharmacol. 55(10), 761–764 (2000)CrossRefGoogle Scholar
  22. Idelovitch, I., Michail, M.: Soil-aquifer treatment – A new approach to an old method of wastewater reuse. J Water Pollut Control Fed 56, 936–943 (1984)Google Scholar
  23. Johnsen, A.R., Wick, L.Y., Harms, H.: Principles of microbial PAH-degradation in soil. Environ Pollut 133, 71–84 (2005)CrossRefGoogle Scholar
  24. Kabata-Pendias, A.: Trace Elements in Soils and Plants, 4th edn. Boca Raton, Florida, p 293 (2011)Google Scholar
  25. Lerner, D.N., Tellam, J.H.: The protection of urban groundwater from pollution. Water Environ J 6, 28–36 (1992)CrossRefGoogle Scholar
  26. Lin, K., Bondarenko, S., Gan, J.: Sorption and persistence of wastewater-borne psychoactive and antilipidemic drugs in soils. J. Soils Sediments 11(8), 1363–1372 (2011)CrossRefGoogle Scholar
  27. Lottermoser, B.G.: Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany. Environ Geochem Health 34, 67–76 (2012)CrossRefGoogle Scholar
  28. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., Wang, X.C.: A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474, 619–641 (2014)CrossRefGoogle Scholar
  29. McDonald, M.G., Harbaugh, A.W.: Modular three-dimensional finite-difference ground-water flow model. TWRI - 06-A1. United States geological survey (1988)Google Scholar
  30. Meffe, R., Kohfahl, C., Hamann, E., Greskowiak, J., Massmann, G., Dünnbier, U., Pekdeger, A.: Fate of Para-Toluenesulfonamide (p-TSA) in groundwater under anoxic conditions: modelling results from a field site in Berlin (Germany). Environ Sci Pollut Res 21, 568–583 (2014)CrossRefGoogle Scholar
  31. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour Res 48(W03527), 1–11 (2012). doi: 10.1029/2011WR011404 Google Scholar
  32. Nham, H.T.T., Greskowiak, J., Nödler, K., Rahman, M.A., Spachos, T., Rusteberg, B., Massmann, G., Sauter, M., Licha, T.: Modeling the transport behavior of 16 emerging organic contaminants during soil aquifer treatment. Sci Total Environ 514, 450–458 (2015)CrossRefGoogle Scholar
  33. Patterson, B.M., Shackleton, M., Furness, A.J., Pearce, J., Descourvieres, C., Linge, K.L., Busetti, F., Spadek, T.: Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: column studies. Water Res. 44, 1471–1481 (2010)CrossRefGoogle Scholar
  34. Peschka, M., Eubeler, J.P., Knepper, T.P.: Occurrence and fate of barbiturates in the aquatic environment. Environ Sci Technol 40, 7200–7206 (2006)CrossRefGoogle Scholar
  35. Rauch-Williams, T., Hoppe-Jones, C., Drewes, J.E.: The role of organic matter in the removal of emerging trace organic chemicals during managed aquifer recharge. Water Res. 44(2), 449–460 (2010)CrossRefGoogle Scholar
  36. Richardson, S.D., Ternes, T.A.: Water analysis:  emerging contaminants and current issues. Anal Chem 77, 3807–3838 (2005)CrossRefGoogle Scholar
  37. Richter, D., Massmann, G., Taute, T., Dünnbier, U.: Investigation of the fate of sulfonamides downgradient of a decommissioned sewage farm near Berlin, Germany. J Contam Hydrol 106(3–4), 183–194 (2009)CrossRefGoogle Scholar
  38. Schäfer, W., Wickert, F., Thiem, A.: Modellrechnungen zur Quantifizierung von NA-Prozessen für den LCKW-Schadensfall in Karlsruhe-Ost/Killisfeld. Grundwasser 12(2), 108–124 (2007)CrossRefGoogle Scholar
  39. Schaffer, M., Boxberger, N., Börnick, H., Licha, T., Worch, E.: Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH. Chemosphere 87, 513–520 (2012)CrossRefGoogle Scholar
  40. Schirmer, M., Leschik, S., Musolff, A.: Current research in urban hydrogeology – A review. Adv Water Resour 51, 280–291 (2013)CrossRefGoogle Scholar
  41. Snyder, S.A., Leising, J., Westerhoff, P., Yoon, Y., Mash, H., Vanderford, B.: Biological and physical attenuation of endocrine disruptors and pharmaceuticals: implications for water reuse. Ground Water Monit Remediat 24(2), 108–118 (2004)CrossRefGoogle Scholar
  42. Sterritt, R.M., Lester, J.N.: The value of sewage sludge to agriculture and effects of the agricultural use of sludges contaminated with toxic elements: A review. Sci. Total Environ. 16, 55–90 (1980)CrossRefGoogle Scholar
  43. Ternes, T.A., Joss, A., Siegrist, H.: Scrutinizing pharmaceuticals and personal care products in wastewater treatment. Environ Sci Technol 15, 393A–398A (2004)Google Scholar
  44. Vanderford, B.J., Snyder, S.A.: Analysis of pharmaceuticals in water by isotope dilution liquid chromatography/tandem mass spectrometry. Environ Sci Technol 40, 7312–7320 (2006)CrossRefGoogle Scholar
  45. Yu, L., Fink, G., Wintgens, T., Melin, T., Ternes, T.: Sorption behavior of potential organic wastewater indicators with soils. Water Res. 43, 951–960 (2009)CrossRefGoogle Scholar
  46. Yu, J.T., Bouwer, E.J., Coelhan, M.: Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agricultural Water Management 86 (1–2):72–80 (2006)CrossRefGoogle Scholar
  47. Zheng, C., Wang, P.P.: MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. DTIC document. (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hang Thuy Thi Nham
    • 1
  • Janek Greskowiak
    • 1
  • Enrico Hamann
    • 2
  • Raffaella Meffe
    • 3
  • Ulrike Hass
    • 4
  • Gudrun Massmann
    • 1
  1. 1.Institute of Biology and Environmental SciencesCarl von Ossietzky Universität OldenburgOldenburgGermany
  2. 2.GeoDienste GmbHGarbsenGermany
  3. 3.Instituto Madrileño de Estudios AvanzadoAvenida Punto Com 2Alcalá de Henares, MadridSpain
  4. 4.Bezirksamt ReinickendorfBerlinGermany

Personalised recommendations