, Volume 20, Issue 1, pp 39–51 | Cite as

Sea level rise and storm surge effects in a coastal heterogeneous aquifer: a 2D modelling study in northern Germany

  • Jie Yang
  • Thomas Graf
  • Thomas Ptak


Climate change will affect coastal groundwater resources due to the mean sea level rise (MSLR) and an increase in storm intensity and frequency. Increasing saltwater intrusion from the subsurface as well as intrusion into aquifers from land-surface storm surges can be expected. We numerically investigate the impacts of MSLR and storm surge events in a 2D cross-sectional aquifer at the North-German coast using the coupled surface-subsurface approach of the HydroGeoSphere model. Aquifer heterogeneity is considered to investigate the influence of heterogeneity on the migration of salt plumes in the aquifer. A 1 m MSLR causes the saltwater/freshwater interface to migrate up to 1250 m landward, and the salinized area of the aquifer to expand up to 2050 m landward. Results from a storm surge simulation show that salt plume fingers develop below the flooded land surface, however, the fate of the salt plumes is highly dependent on the hydraulic conductivity of the subsurface.


Sea level rise Storm surge Heterogeneous aquifer 

Effekte von Meerwasseranstieg und Sturmfluten in einem Küstenaquifer: eine 2D Modellierstudie in Norddeutschland


Der Klimawandel wird küstennahe Grundwasserressourcen beeinträchtigen. Dies wird einerseits durch den Anstieg des Meeresspiegels geschehen, was zu einer Zunahme der Salzwasserintrusion in einen küstennahen Aquifer führt. Andererseits werden die Intensität und Frequenz von Sturmfluten zunehmen, und es kann zu vermehrter Überspülung von Salzwasser über Deiche kommen. In der Folge wird das Salzwasser der Sturmfluten in den Untergrund infiltrieren und küstennahes Grundwasser kontaminieren. Mit dem numerischen Modell HydroGeoSphere untersuchen wir den Einfluss des steigenden Meeresspiegels und den Einfluss von Sturmfluten auf die Grundwasserressourcen einer norddeutschen Küstenregion. an der Oberflächenabfluss und Strömung im Untergrund können in diesem Modell vollständig gekoppelt werden. In den Simulationen wird die Heterogenität des Aquifers berücksichtigt, um deren Einfluss auf den Salztransport im Aquifer zu untersuchen. Ein Meeresspiegelanstieg von 1 m führt zu einem Versatz der Salzwasser/Süßwasser-Grenze um 1250 m landwärts und zu einer Vergrößerung der versalzenen Aquiferbreite um bis zu 2.050 m. Ergebnisse einer Sturmflut- Simulation zeigen, dass sich unter der überfluteten Landoberfläche Salzfinger bilden. Der Salztransport ist wesentlich von den hydraulischen Leitfähigkeiten des heterogenen Untergrundes abhängig.



This research was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant number GR 3463/2−1. We thank the editorial board of Grundwasser (Gudrun Massmann, Tania Röper) for handling our manuscript. We also thank two anonymous reviewers whose constructive comments have helped improve the manuscript.


  1. Anderson, W.P. Jr., Lauer, R.M.: The role of overwash in the evolution of mixing zone morphology within barrier islands. Hydrogeol. J. 16(8), 1483–1495 (2008)CrossRefGoogle Scholar
  2. Chini, N., Stansby, P.K.: Extreme values of coastal wave overtopping accounting for climate change and sea level rise. Coast. Eng. 65, 2737 (2012)CrossRefGoogle Scholar
  3. Chow, V.T.: Open-Channel Hydraulics, 680 pp. McGraw-Hill, New York (1959)Google Scholar
  4. Chui, T.F.M., Terry, J.P.: Modeling freshwater lens damage and recovery on atoll islands after storm-wave washover. Ground Water. 50, 412–420 (2011)CrossRefGoogle Scholar
  5. Chui, T.F.M., Terry, J.P.: Influence of sea-level rise on freshwater lenses of different atoll island sizes and lens resilience to storm-induced salinization. J. Hydrol. 502, 1826 (2013)Google Scholar
  6. EurOtop: Wave overtopping of sea defences and related structures: assessment manual. Die Küste—Archive for research and technology on the North Sea and Baltic Sea coast. Kuratorium Forsch. Küsteningenieurwesen. 73, 178 (2007)Google Scholar
  7. Gelhar, L.W., Welty, C., Rehfeldt, K.R.: A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 28(7), 1955–1974 (1992)CrossRefGoogle Scholar
  8. Giambastiani, B.M.S., Antonellini, M., Oude Essink, G.H.P., Stuurman, R.J.: Saltwater intrusion in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J. Hydrol. 340, 91–104 (2007)CrossRefGoogle Scholar
  9. Gönnert, G., Dube, S.K., Murty, T., Siefert, W.: Global storm surges, Die Küste—Archive for research and technology on the North Sea and Baltic Sea coast. Kuratorium Forsch. Küsteningenieurwesen. 63, 623 (2001)Google Scholar
  10. Graf, T., Simmons, C.T., Boufadel, M.C., Neuweiler, I.: Movement of dense plumes in variably saturated porous media: numerical model and results. Proceedings of the XVIII International Conference on Water Resources (CMWR), Barcelona, Spain, June 2010. Abstract 23 (2010)Google Scholar
  11. Guo, W., Langevin, C.: Users guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geological Survey Open-File Report 01-434 (2002)Google Scholar
  12. Henry, H.R.: Effects of dispersion on salt encroachment in coastal aquifers, sea water in coastal aquifers. US Geol. Surv. Water Supply Pap. 1613-C, 70–84 (1964)Google Scholar
  13. Illangasekare, T., Tyler, S.W., Clement, T.P., Villholth, K.G., Perera, A.P.G.R.L., Obeysekera, J.: Impacts of the 2004 tsunami on groundwater resources in Sri Lanka. Water Resour. Res. 42, W05201 (2007)Google Scholar
  14. Kooi, H., Groen, J., Leijnse, A.: Modes of seawater intrusion during transgressions. Water Resour. Res. 36, 3581–3589 (2000)CrossRefGoogle Scholar
  15. Langevin, C., Swain, E., Wolfert, M.: Simulation of integrated surface water/ground-water flow and salinity for a coastal wetland and adjacent estuary. J. Hydrol. 314, 212–234 (2005)CrossRefGoogle Scholar
  16. Landerer, F., Jungclaus, J.H., Marotzke, J.: Regional dynamic and steric sea level change in response to the IPCC-A1B scenario. J. Phys. Oceanogr. 37 (2), 296–312 (2007)CrossRefGoogle Scholar
  17. LBEG – Landesamt für Bergbau, Energie und Geologie (LBEG), Hannover: Untere Wester Lockergestein rechts -geologischer Schnitt. Accessed 8 March 2008.
  18. Leendertse, J.J.: Aspects of SIMSYS2D, a system for two dimensional flow computation. R and Corporation Report R-3572-USGS, Santa Monica, CA, 80 pp (1987)Google Scholar
  19. Li, H., Boufadel, M.C.: Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nat. Geosc. 3, 96–99 (2010)CrossRefGoogle Scholar
  20. Li, H., Boufadel, M.C.: A tracer study in an Alaskan gravel beach and its implications on the persistence of the Exxon Valdez oil. Mar. Pollut. Bull. 62, 1261–1269 (2011)CrossRefGoogle Scholar
  21. Manning, R.: On the flow of water in open channels and pipes. Trans. Inst. Civ. Engineers Irel. 20, 161–207 (1891)Google Scholar
  22. Narayan, K.A., Schleeberger, C., Bristow, K.L.: Modelling seawater intrusion in the Burdekin Delta irrigation area, North Queensland, Australia. Agr. Water Manage. 89, 217–228 (2007)CrossRefGoogle Scholar
  23. NLfB – Niedersächsischen Landesamtes für Bodenforschung: Grundwasser- und Geotechnische Planungskarte Bremerhaven, Karte B, 1:10000 [map]. NLfB, Bremen (2002)Google Scholar
  24. NLfB – Niedersächsischen Landesamtes für Bodenforschung: Grundwasser- und Geotechnische Planungskarte Bremerhaven, Beiheft [map]. NLfB, Bremen (2003)Google Scholar
  25. NLfB – Niedersächsischen Landesamtes für Bodenforschung: Geofakten 21: Hydrostratigrafische Gliederung Niedersachsens. NLfB, Bremen (2005a)Google Scholar
  26. NLfB – Niedersächsischen Landesamtes für Bodenforschung: Auszug aus dem gemeinsamen Bericht 2005/Grundwasser, Anhang 2 “Beschreibung der hydrogeologischen Teilräume” der Länder Niedersachsen und Bremen. NLfB, Bremen (2005b)Google Scholar
  27. Oude Essink, G.H.P., van Baaren, E.S., de Louw, P.G.B.: Effects of climate change on coastal groundwater systems: a modeling study in the Netherlands. Water Resour. Res. 46, W00F04 (2010)CrossRefGoogle Scholar
  28. Paniconi, C., Khlaifi, I., Lecca, G., Giacomelli, A., Tarhouni, J.: Modeling and analysis of seawater intrusion in the coastal aquifer of Eastern CapBon, Tunisia. Transport Porous Med. 43, 3–28 (2001)CrossRefGoogle Scholar
  29. Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., Hanson (eds), C.E.: Climate Change 2007: impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press 976, Cambridge (2007)Google Scholar
  30. Therrien, R., McLaren, R., Sudicky, E., Panday, S.: HydroGeoSphere—A Three-Dimensional Numerical Model Describing Fully-Integrated Subsurface and Surface Flow and Solute Transport. University of Waterloo and Université Laval, Canada (2010)Google Scholar
  31. Vanderkwaak, J.: Numerical simulation of flow and chemical transport in integrated surface-subsurface hydrologic systems. Ph.D. Thesis in Earth Sciences, University of Waterloo, Waterloo, Ontario, Canada, 217 pp (1999)Google Scholar
  32. van Genuchten, M.T.: A closed–form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980)CrossRefGoogle Scholar
  33. Vermeer, M., Rahmstorf, S.: Global sea level linked to global temperature. Proc. Natl. Acad. Sci. 106(51), 21527–21532 (2009)CrossRefGoogle Scholar
  34. Viessman, W. Jr., Lewis, G.L.: Introduction to Hydrology. 4th edn. Harper Collins College Publisher, New York, 760 pp (1996)Google Scholar
  35. Violette, S., Boulicot, G., Gorelick, S.M.: Tsunami-induced groundwater salinization in southeastern India. C. R. Geosci. 341, 339–346 (2009)CrossRefGoogle Scholar
  36. Vithanage, M., Engesgaard, P., Jensen, K.H., Illangasekare, T.H., Obeyseker, J.: Laboratory investigations of the effects of geologic heterogeneity on groundwater salinization and flush-out times from a tsunami-like event. J. Contam. Hydrol. 136–137, 10–24 (2012)CrossRefGoogle Scholar
  37. Von Storch, H., Doerffer, J., Meinke, I.: Die deutsche Nordseeküste und der Klimawandel. In Ratter, B.M.W. (ed.) Hamburger Symposium Geographie, vol. 1, Universität Hamburg, pp. 9–22 (2009)Google Scholar
  38. Voss, C.I.: SUTRA: a finite-element simulation model for saturated-unsaturated fluid density-dependent groundwater flow with energy transport or chemically reactive single-species solute transport. US Geological Survey Water-Resources Investigations Report, vols. 84–4369, 409 pp. USGS Publications Warehouse (1984)Google Scholar
  39. Voss, C.I., Souza, W.R.: Variable density flow and transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 26, 2097–2106 (1987)Google Scholar
  40. Walther, M., Delfs, J.O., Grundmann, J., Kolditz, O., Liedl, R.: Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J. Comput. Appl. Math. 236, 4798–4809 (2012)CrossRefGoogle Scholar
  41. Werner, A.D., Bakker, M., Post, V.E.A., Vandenbohede, A., Lu, C., Ataie-Ashtiani, B., Simmons, C.T., Barry, D.A.: Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv. Water Resour. 51, 3–26 (2013)CrossRefGoogle Scholar
  42. Woth, K., von Storch, H.: Klima im Wandel: Mögliche Zukünfte des Norddeutschen Küstenklimas. Dithmarschen Landeskunde-Kultur Natur. 1/2008, 20–31 (2008)Google Scholar
  43. Yang, J., Graf, T., Herold, M., Ptak, T.: Modelling the effects of tides and storm surges on coastal aquifers using a coupled surface-subsurface approach. J. Contam. Hydrol. 149, 61–75 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Fluid Mechanics in Civil EngineeringLeibniz Universität HannoverHannoverGermany
  2. 2.Geosciences CenterUniversity of GöttingenGöttingenGermany

Personalised recommendations