Skip to main content
Log in

Prozessmodellierung hochsalinarer Wässer mit einem erweiterten PHREEQC-Datensatz

Extension of the PHREEQC database “pitzer.dat” for modeling hydrogeochemical processes in saline waters and brines

  • Technische Mitteilung
  • Published:
Grundwasser Aims and scope Submit manuscript

A Kommentar to this article was published on 17 May 2016

Zusammenfassung

Die Modellierung hydrogeochemischer Prozesse in hochsalinaren Wässern stellt immer noch eine Herausforderung dar. Eine wesentliche Voraussetzung für diese Modellierung ist die Anwendung eines geeigneten thermodynamischen Datensatzes. Ein solcher Datensatz wurde für das Programm PHREEQC durch die Erweiterung des mit dem Programm gelieferten Datensatzes „pitzer.dat“ erarbeitet. In den neu entwickelten Datensatz (benannt nach dem Projekt „gebo“) wurden folgende Elemente unter Berücksichtigung ihrer Oxidationsstufe als „solution master species“ eingefügt: Fe, Fe(+2), Fe(+3), S(−2), N, N(+5), N(+3), N(0), N(−3), C(−4), Si, Zn, Pb und Al. Entsprechend dieser eingefügten „solution master species“ wurden aquatische Komplexe, feste Phasen und Gase mit den entsprechenden Gleichgewichtskonstanten und deren Temperaturabhängigkeit sowie Pitzer-Parameter zur Berechnung der Aktivitätskoeffizienten in Lösungen hoher Ionenstärke in den Datensatz aufgenommen. Eine Prüfung des „gebo“-Datensatzes, die durch einen Vergleich von experimentell ermittelten Daten zur Löslichkeit verschiedener Mineral- und Gasphasen mit entsprechenden Modellierungsergebnissen erfolgte, zeigt, dass eine quantitative Abschätzung von hydrogeochemischen Reaktionsumsätzen möglich ist.

Abstract

The modeling of hydrogeochemical processes in saline waters and brines is quite a challenge. The main prerequisite for the modeling is a suitable thermodynamic database. Such a database was developed for the PHREEQC computer code by extension of the PHREEQC database “pitzer.dat”. The extended database presented here is named after the project “gebo” and includes additional solution master species of Fe, Fe(+2), Fe(+3), S(−2), N, N(+5), N(+3), N(0), N(−3), C(−4), Si, Zn, Pb, and Al. According to these solution master species, associated solution species, solid phases, and gases, as well as temperature dependences of the appropriate mass action law constants and Pitzer parameters for the calculation of activity coefficients in aqueous solutions of high ionic strength are implemented. In contrast to the conventional “pitzer.dat” database, the extended version allows calculating several additional hydrogeochemical equilibrium reactions that are crucial for the compositional development of brines and highly mineralized formation waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  • Accornero, M., Marini, L.: Empirical prediction of the Pitzer’s interaction parameters for cationic Al species with both SiO2(aq) and CO2(aq): implications for the geochemical modelling of very saline solutions. Appl. Geochem. 24, 747–759 (2009)

    Article  Google Scholar 

  • Azaroual, M., Fouillac, C., Matray, J.M.: Solubility of silica polymorphs in electrolyte solutions. I. Activity coefficient of aqueous silica from 25 to 250 C, Pitzer’s parameterization. Chem. Geol. 140, 155–165 (1997)

    Article  Google Scholar 

  • Bethke, C.M., Yeakel, S.: The Geochemist’s Workbench. Reference Manual, Version 7.0, 281 S. University of Illinois (2007)

  • Blount, C.W.: Barite solubilities and thermodynamic quantities up to 300 C and 1400 bars. Am. Mineral. 62, 942–957 (1977)

    Google Scholar 

  • Christov, C.: Thermodynamic study of the K-Mg-Al-Cl-SO4-H2O system at the temperature 298.15 K. Calphad 25, 445–454 (2001)

    Article  Google Scholar 

  • Cohen, M.D., Flagan, R.C., Seinfeld, J.H.: Studies of concentrated solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 91, 4563–4574 (1987)

    Article  Google Scholar 

  • Dethlefsen, F., Haase, C., Ebert, M., Dahmke, A.: Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ. Earth Sci. 65, 1105–1117 (2012)

    Article  Google Scholar 

  • Duan, Z., Møller, N., Greenberg, J., Weare, J.H.: The prediction of methane solubility in natural waters to high ionic strength from 0 to 250C and from 0 to 1600 bar. Geochim. Cosmochim. Acta 56, 1451–1460 (1992)

    Article  Google Scholar 

  • Harvie, C.E., Møller, N., Weare, J.H.: The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-CI-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25C. Geochim. Cosmochim. Acta 48, 723–751 (1984)

    Article  Google Scholar 

  • Johnson, J.W., Oelkers, E.H., Helgeson, H.C.: SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000C. Comput. Geosci. 18, 899–947 (1992)

    Article  Google Scholar 

  • Marion, G.M., Catling, D.C., Kargel, J.S.: Modeling gas hydrate equilibria in electrolyte solutions. Calphad 30, 248–259 (2006)

    Article  Google Scholar 

  • May, P.M., Rowland, D., Hefter, G., Königsberger, E.: A generic and updatable Pitzer characterization of aqueous binary electrolyte solutions at 1 bar and 25C. J. Chem. Eng. Data 56, 5066–5077 (2011)

    Article  Google Scholar 

  • Millero, F.J.: The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar. Chem. 18, 121–147 (1986)

    Article  Google Scholar 

  • Molinero, J., Samper, J.: Large-scale modeling of solute transport in fracture zones of granitic bedrocks. J. Contam. Hydrol. 82, 293–318 (2006)

    Article  Google Scholar 

  • Møller, N.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na-Ca-Cl-SO4-H2O system, to high temperature and concentration. Geochim. Cosmochim. Acta 52, 821–837 (1988)

    Article  Google Scholar 

  • Monnin, C.: The influence of pressure on the activity coefficients of solutes and on the solubility of minerals in the system Na-Ca-Cl-SO4-H2O to 200 C and 1 kbar, and to high NaCl concentration. Geochim. Cosmochim. Acta 54, 3265–3282 (1990)

    Article  Google Scholar 

  • Monnin, C.: A thermodynamic model for the solubility of barite and celestite in electrolyte solutions and seawater to 200 C and to 1 kbar. Chem. Geol. 153, 187–209 (1999)

    Article  Google Scholar 

  • Monnin, C., Galinier, C.: The solubility of celestite and barite in electrolyte solutions and natural waters at 25C: a thermodynamic study. Chem. Geol. 71, 283–296 (1988)

    Article  Google Scholar 

  • Moog, H.C., Hagemann, S.: Thermodynamische Modellierung hochsalinarer Lösungen, Gewinnung von Daten für Fe(II), Fe(III) und S(-II) und Entwicklung eines Programms zur Modellierung des reaktiven Stofftransports im Nahfeld eines Endlagers. GRS-Bericht, BMWA 02E9138 4 (2004)

  • Parkhurst, D.L.: Ion-association models and mean activity coefficient of various salts. In: Melchior, D.C., Bassett, R.L. (eds.) Chemical Modeling of Aqueous Systems II, S. 30–43. ACS, Ashington (1990)

    Chapter  Google Scholar 

  • Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one dimensional transport, and inverse geochemical calculations. US Geological Survey, Water Resources Investigations Report 99-4259, Washington, DC (1999)

  • Plummer, L.N., Parkhurst, D.L.: Application of the Pitzer equations to the PHREEQE geochemical model. In: Melchior, D.C., Bassett, R.L. (eds.) Chemical Modeling of Aqueous Systems II, S. 128–137. ACS, Ashington (1990)

    Chapter  Google Scholar 

  • Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton, 542 S. (1991)

    Google Scholar 

  • Pitzer, K.S.: A thermodynamic model for aqueous solutions of liquid-like density. Rev. Mineral. 17, 97–142 (1987)

    Google Scholar 

  • Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  Google Scholar 

  • Pope, L.A., Hajash, A., Popp, R.K.: An experimental investigation of the quartz, Na-K, Na-K-Ca geothermometers and the effects of fluid composition. J. Volcanol. Geotherm. Res. 31, 151–161 (1987)

    Article  Google Scholar 

  • Reardon, E.J.: Ion interaction parameters for AlSO4 and application to the prediction of metal sulfate solubility in binary salt systems. J. Phys. Chem. 92, 6426–6431 (1988)

    Article  Google Scholar 

  • Reardon, E.J.: An ion interaction model for the determination of chemical equilibria in cement/water systems. Cem. Concr. Res. 20, 175–192 (1990)

    Article  Google Scholar 

  • Templeton, C.C.: Solubility of barium sulfate in sodium chloride solution from 25 to 95C. J. Chem. Eng. Data 5, 514–516 (1960)

    Article  Google Scholar 

  • Voigt, W.: Chemistry of salts in aqueous solutions: applications, experiments, and theory. Pure Appl. Chem. 83, 1015–1030 (2011)

    Article  Google Scholar 

  • Whitfield, M.: The extension of chemical models for sea water to include trace components at 25C and 1 atm pressure. Geochim. Cosmochim. Acta 39, 1545–1557 (1975)

    Article  Google Scholar 

  • Wesolowski, D.J., Ziemniak, S.E., Anovitz, L.M., Machesky, M.L., Bénezeth, P., Palmer, D.A.: Solubility and surface adsorption characteristics of metal oxides. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous Systems at Elevated Temperatures and Pressures: Physical Chemistry in Water, Steam, and Hydrothermal Solutions, S. 493–595. Academic Press, San Diego (2004)

    Chapter  Google Scholar 

Download references

Danksagung

Die vorgestellten Ergebnisse wurden im Rahmen des Projektes „Geothermie und Hochleistungsbohrtechnik“ (gebo) – gefördert durch das Niedersächsische Ministerium für Wissenschaft und Kultur sowie Baker Hughes Celle – erarbeitet. D. Parkhurst und B. Merkel wird für wertvolle Hinweise zur Nutzung des Programmes PHREEQC gedankt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Bozau.

Additional information

Ein Kommentar zu diesem Beitrag ist unter http://dx.doi.org/10.1007/s00767-016-0326-z zu finden.

Zusätzliche Information

Ergänzendes Onlinematerial kann unter folgendem Link abgerufen werden.

(PHRQ 20 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozau, E. Prozessmodellierung hochsalinarer Wässer mit einem erweiterten PHREEQC-Datensatz. Grundwasser 18, 93–98 (2013). https://doi.org/10.1007/s00767-013-0222-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-013-0222-8

Keywords

Navigation