Bestimmung von hydraulischen Parametern in Lockergesteinen: Ein Vergleich unterschiedlicher Feldmethoden

Investigation of hydraulic parameters in unconsolidated sediments: a comparison of methods

Zusammenfassung

In dieser Feldstudie werden die laufzeitbasierte tomographische Inversion von Daten aus Kurzzeitpumpversuchen mit der analytischen Auswertung verglichen und die ermittelten hydraulischen Parameter hinsichtlich ihrer räumlichen Auflösung diskutiert und bewertet. Als Datenbasis dienen Messergebnisse aus Kurzzeitpumpversuchen, die in einer tomographischen Messanordnung in einem zwei Meter mächtigen, gut charakterisierten Sand- und Kiesgrundwasserleiter unter Verwendung eines 2“-Brunnens und eines Multikammerbrunnens, beide mit Direct-Push-Technik installiert, durchgeführt wurden. Die analytische Auswertung der Kurzzeitpumpversuche hat gezeigt, dass es nicht möglich ist, Bereiche mit unterschiedlichen hydraulischen Eigenschaften voneinander abzugrenzen. Entsprechend einem Vergleich mit den Ergebnissen von Multilevel-Slug-Tests werden die ermittelten hydraulischen Parameter, trotz einer geringen Pumpdauer von 200 Sekunden und hydraulisch isolierten Pump- und Beobachtungsintervallen, von einem hydraulisch höher durchlässigen Bereich am unteren Rand des Grundwasserleiters dominiert. Die laufzeitbasierte tomographische Inversion ermöglicht hingegen, vertikale und laterale Änderungen der Diffusivitätsverteilung zwischen Pump- und Beobachtungsbrunnen hochaufgelöst zu rekonstruieren.

Abstract

In this study the potential of a hydraulic travel-time based inversion approach with analytical solutions for the evaluation of short term pumping tests is assessed. The data base comprises measurements from short-term pumping tests performed in a sand and gravel aquifer using a tomographic measurement array. The evaluation, which is based on an analytical solution, has shown that it is not possible to delimit aquifer zones with different hydraulic properties. The comparison with multi-level slug tests has revealed that the pumping test results are dominated by a zone with a relatively high hydraulic conductivity located close to the bottom of the aquifer. This finding is surprising due to the short pumping time of 200 seconds and due to the hydraulically isolated pumping and observation intervals. The travel-time based inversion, however, allows the reconstruction of vertical and lateral changes in hydraulic diffusivity, between pumping and observation wells, with a high resolution.

This is a preview of subscription content, log in to check access.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Bohling, G.C., Zhan, X., Butler, J.J. Jr., Zheng, L.: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneous. Water Resour. Res. 38(12), 1324 (2002)

    Article  Google Scholar 

  2. Bohling, G.C., Butler, J.J. Jr., Zhan, X., Knoll, M.D.: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resour. Res. 43(5), W05430 (2007)

    Article  Google Scholar 

  3. Boman, G.K., Molz, F.J., Boonec, K.D.: Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment. Ground Water 35(3), 443–450 (1997)

    Article  Google Scholar 

  4. Brauchler, R., Liedl, R., Dietrich, P.: A travel time based hydraulic tomographic approach. Water Resour. Res. 39(12), 1370 (2003)

    Article  Google Scholar 

  5. Brauchler, R., Cheng, J.-T., Dietrich, P., Everett, M., Johnson, B., Liedl, R., Sauter, M.: An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion. J. Hydrol. 345(3–4), 184–198 (2007)

    Article  Google Scholar 

  6. Brauchler, R., Hu, R., Vogt, T., Al-Halbouni, D., Heinrichs, T., Ptak, T., Sauter, M.: Cross-well slug interference tests: An effective characterization method for resolving aquifer heterogeneity. J. Hydrol. 384(1–2), 33–45 (2010)

    Article  Google Scholar 

  7. Brauchler, R., Hu, R., Dietrich, P., Sauter, M.: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resour. Res. 47, W03503 (2011)

    Article  Google Scholar 

  8. Butler, J.J. Jr.: The Design, Performance, and Analysis of Slug Tests. Lewis Pub., 252 S. (1998)

  9. Butler, J.J. Jr., Bohling, G.C., Hyder, Z., McElwee, C.D.: The use of slug tests to describe vertical variations in hydraulic conductivity. J. Hydrol. 156(1–4), 137–162 (1994)

    Article  Google Scholar 

  10. Butler, J.J. Jr., Garnett, E.J., Healey, J.M.: Analysis of slug tests in formations of high hydraulic conductivity. Ground Water 41(5), 620–630 (2003)

    Article  Google Scholar 

  11. Butler, J.J. Jr., Dietrich, P., Wittig, V., Christy, T.: Characterizing hydraulic conductivity with the Direct-Push permeameter. Ground Water 45(4), 409–419 (2007)

    Article  Google Scholar 

  12. Cheng, J., Brauchler, R., Everett, M.E.: Comparison of early and late travel times of pressure pulses induced by multilevel slug tests. Eng. Appl. Comput. Fluid Mech. 3(4), 529–541 (2009)

    Google Scholar 

  13. Christy, C.D., Christy, T.M., Wittig, V.: A percussion probing tool for the direct sensing of soil conductivity. In: Proceedings of the 8th National Outdoor Action Conference, Westerville, Ohio. National Ground Water Association, S. 381–394 (1994)

    Google Scholar 

  14. Cooper, H.H., Jacob, C.E.: A generalized graphical method for evaluation formation constants and summarizing well-field history. Trans. - Am. Geophys. Union 27(4), 526–534 (1946)

    Google Scholar 

  15. Danielson, R.E., Sutherland, P.L.: Porosity. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 443–461 (1986)

  16. Datta-Gupta, A., Kulkarni, K.N., Yoon, S., Vasco, D.W.: Streamlines ray tracing and production tomography: Generalization to compressible flow. Pet. Geosci. 7, 75–86 (2001)

    Article  Google Scholar 

  17. Diem, S., Vogt, T., Hoehn, E.: Räumliche Charakterisierung der hydraulischen Leitfähigkeit in alluvialen Schotter-Grundwasserleitern: Ein Methodenvergleich. Grundwasser 15(4), 241–251 (2010)

    Article  Google Scholar 

  18. Dietrich, P., Leven, C.: Direct push technologies. In: Kirsch, R. (Hrsg.) Groundwater Geophysics, S. 321–340. Springer, Berlin (2006)

    Google Scholar 

  19. Dietrich, P., Butler, J.J. Jr., Faiß, K.: A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2), 323–328 (2008)

    Article  Google Scholar 

  20. Einarson, M.D., Cherry, J.A.: A new multilevel groundwater monitoring system using multichannel tubing. Ground Water Monit. Remediat. 22(4), 52–65 (2002)

    Article  Google Scholar 

  21. Fetter, W.: Applied Hydrology. Prentice Hall, Upper Saddle River, 691 S. (1994)

    Google Scholar 

  22. Gee, G.W., Bauder, J.W.: Particle-size analysis. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 383–411 (1986)

  23. Gilbert, P.: Iterative methods for three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972)

    Article  Google Scholar 

  24. Gottlieb, J., Dietrich, P.: Identification of the permeability distribution in soil by hydraulic tomography. Inverse Probl. 11(2), 353–360 (1995)

    Article  Google Scholar 

  25. Hantush, M.S.: Hydraulic of wells. In: Chow, V.T. (Hrsg.) Advances in Hydroscience. Academic Press, New York, S. 281–442 (1964)

    Google Scholar 

  26. He, Z., Datta-Gupta, A., Vasco, D.W.: Rapid inverse modeling of pressure interference tests using trajectory-based traveltime and amplitude sensitivities. Water Resour. Res. 42, W03419 (2006)

    Article  Google Scholar 

  27. Hvorslev, M.J.: Time lag and soil permeability. In: Ground water observations, U.S. Army Corps of Eng. Waterways Exper. Sta. Bull 36 (1951)

  28. Hu, R.: Hydraulic tomography: a new approach coupling hydraulic travel time, attenuation and steady shape inversions for high-spatial resolution aquifer characterization. Hochschulschrift: Göttingen, Univ., Diss., 116 S. (2011)

  29. Hu, R., Brauchler, R., Herold, M., Bayer, P.: Hydraulic tomography analogue study: Coupling travel time and steady shape inversion. J. Hydrol. 409(1–2), 350–362 (2011). doi:10.1016/j.jhydrol.2011.08.031

    Article  Google Scholar 

  30. Illman, W.A., Liu, X., Craig, A.: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms. J. Hydrol. 341(3–4), 222–234 (2007)

    Article  Google Scholar 

  31. Illman, W.A., Liu, X., Takeuchi, S., Yeh, T.J., Ando, K., Saegusa, H.: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan. Water Resour. Res. 45, W01406 (2009)

    Article  Google Scholar 

  32. Illman, W.A., Zhu, J., Craig, A.J., Yin, D.: Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Water Resour. Res. 46, W04502 (2010)

    Article  Google Scholar 

  33. Kabala, Z.J.: The dipole flow test: A new single borehole test for aquifer characterization. Water Resour. Res. 29(1), 99–107 (1993)

    Article  Google Scholar 

  34. Klute, A., Dirksen, C.: Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical Mineralogical Methods. Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 687–734 (1986)

  35. Kulkarni, K.N., Datta-Gupta, A., Vasco, D.W.: A streamline approach to integrating transient pressure data into high resolution reservoir models. In: SPE European Petroleum Conference, 24–25 October 2000, Paris, France. SPE Journal, 6(3) (2001)

  36. Lessoff, S.C., Schneidewind, U., Leven, C., Blum, P., Dietrich, P., Dagan, G.: Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour. Res. 46, W12502 (2010)

    Article  Google Scholar 

  37. Leven, C., Dietrich, P.: What information can we get from pumping tests? Comparing pumping test configurations using sensitivity coefficients. J. Hydrol. 319(1–4), 199–215 (2006)

    Article  Google Scholar 

  38. Li, W., Nowak, W., Cirpka, O.A.: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown. Water Resour. Res. 41(8), W08403 (2005)

    Article  Google Scholar 

  39. Li, W., Englert, A., Cirpka, O.A., Vanderborght, J., Vereecken, H.: 2-D characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 43(4), W04433 (2007)

    Article  Google Scholar 

  40. Liu, S., Yeh, T.-C.J., Gardiner, R.: Effectiveness of tomography: Sandbox experiments. Water Resour. Res. 38(4), 000 (2002)

    Article  Google Scholar 

  41. Liu, X., Illman, W.A., Craig, A.J., Zhu, J., Yeh, T.-C.J.: Laboratory sandbox validation of transient hydraulic tomography. Water Resour. Res. 43, W05404 (2007)

    Article  Google Scholar 

  42. Liu, G., Butler, J.J. Jr., Bohling, G.C., Reboulet, E., Knobbe, S., Hyndman, D.W.: A new method for high-resolution characterization of hydraulic conductivity. Water Resour. Res. 45, W08202 (2009)

    Article  Google Scholar 

  43. McDermott, C., Sauter, M., Liedl, R.: New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples. J. Hydrol. 278, 51–63 (2003)

    Article  Google Scholar 

  44. Melville, J.G., Molz, F.J., Guven, O., Widdowson, M.A.: Multilevel slug tests with comparison to tracer data. Ground Water 29(6), 897–907 (1991)

    Article  Google Scholar 

  45. Molz, F.J., Morin, R.H., Hess, A.E., Melville, J.G., Guven, O.: The impeller meter for measuring aquifer permeability variations: Evaluation and comparison with other tests. Water Resour. Res. 25(7), 1677–1683 (1989)

    Article  Google Scholar 

  46. Molz, F.J., Young, S.C.: Development and application of borehole flowmeters for environmental assessment. Log Anal. 34(1), 13–23 (1993)

    Google Scholar 

  47. Peursem, D.V., Zlotnik, V.A., Ledder, G.: Groundwater flow near vertical recirculatory wells: Effect of skin on flow geometry and travel times with implications for aquifer remediation. J. Hydrol. 222(1–4), 109–122 (1999)

    Article  Google Scholar 

  48. Peterson, J.E., Paulsson, B.N.P., McEvilly, T.V.: Application of algebraic reconstruction techniques to crosshole seismic data. Geophysics 50, 1566–1580 (1985)

    Article  Google Scholar 

  49. Rovey, C.W.II., Niemann, W.L.: Discussion of “Relationship between pumping-test and slug-test parameters: Scale effects or artifact?” by Butler, J.J. Jr. and Healy, J.M. in Ground Water 36(2), 305–313. Ground Water 36(6), 866–867 (1998)

  50. Schulmeister, M.K., Butler, J.J. Jr., Healey, J.M., Zheng, L., Wysocki, D.A., McCall, W.: Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monit. Remediat. 23(3), 52–62 (2003)

    Article  Google Scholar 

  51. Straface, S., Yeh, T.-C.J., Zhu, J., Troisi, S., Lee, C.H.: Sequential aquifer tests at a well field. Montalto Uffugo Scalo, Italy. Water Resour. Res. 43, W07432 (2007)

    Article  Google Scholar 

  52. Streltsova, T.: Well Testing in Heterogeneous Formations. Exxon Monographs, 413. Wiley, New York (1989)

    Google Scholar 

  53. Sudicky, E.A., Huyakorn, P.S.: Contaminant migration in imperfect known heterogeneous groundwater systems. US Natl. Rept. Int. Union Geol. Geophys. 1987–1990. Rev. Geophys. 29, 240–253 (1991)

    Google Scholar 

  54. Teutsch, G., Klingbeil, R., Kleineidam, R.: Numerical modeling of reactive transport using aquifer analogue data. In: GQ’98: Groundwater Quality Conference, Tübingen. IAHS Publ. 250, S. 381–390 (1998)

    Google Scholar 

  55. Vasco, D.W., Karasaki, K.: Interpretation and inversion of low-frequency head observations. Water Resour. Res. 42, W05408 (2006)

    Article  Google Scholar 

  56. Vasco, D.W., Keers, H., Karasaki, K.: Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour. Res. 36(12), 3447–3465 (2000)

    Article  Google Scholar 

  57. Vesselinov, V.V., Neumann, S.P., Illmann, W.A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff. 1. Methodology. Water Resour. Res. 37(12), 3001–3017 (2001a)

    Article  Google Scholar 

  58. Vesselinov, V.V., Neumann, S.P., Illmann, W.A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff. 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour. Res. 37(12), 3019–3041 (2001b)

    Article  Google Scholar 

  59. Virieux, J., Flores-Luna, C., Gibert, D.: Asymptotic theory for diffusive electromagnetic imaging. Geophys. J. Int. 119(3), 857–868 (1994)

    Article  Google Scholar 

  60. Wu, C.-M., Yeh, T.-C.J., Zhu, J., Lee, T.H., Hsu, N.-S., Chen, C.-H., Sancho, A.F.: Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resour. Res. 41, W09402 (2005)

    Article  Google Scholar 

  61. Yeh, T.-C.J., Liu, S.: Hydraulic tomography: Development of a new aquifer test method. Water Resour. Res. 36(8), 2095–2105 (2000)

    Article  Google Scholar 

  62. Young, S.C., Pearson, H.S.: The electromagnetic borehole flowmeter: Description and application. Ground Water Monit. Remediat. 15(2), 138–146 (1995)

    Article  Google Scholar 

  63. Zheng, C., Gorelick, S.M.: Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water 41(2), 142–155 (2003)

    Article  Google Scholar 

  64. Zlotnik, V.A., Ledder, G.: Theory of dipole flow in uniform anisotropic aquifers. Water Resour. Res. 32(4), 1119–1128 (1996)

    Article  Google Scholar 

  65. Zlotnik, V.A., Zurbuchen, B.R.: Dipole probe: Design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity. Ground Water 36(6), 884–893 (1998)

    Article  Google Scholar 

  66. Zlotnik, V., Zurbuchen, B., Ptak, T.: The steady-state dipole-flow test for characterization of hydraulic conductivity statistics in a highly permeable aquifer: Horkheimer Insel site, Germany. Groundwater 39(4), 504–516 (2001)

    Article  Google Scholar 

  67. Zhu, J., Yeh, T.-C.J.: Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour. Res. 41, W07028 (2005)

    Article  Google Scholar 

Download references

Danksagung

Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Projektes „High resolution aquifer characterization based on Direct-Push technology: An integrated approach coupling hydraulic and seismic tomography“ (Projektnr. BR3379/1-2) finanziert. Die Autoren möchten sich auch für die Unterstützung durch die Stadtwerke Göttingen und das Amt für Umwelt der Stadt Göttingen bedanken.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. Ralf Brauchler.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Brauchler, R., Hu, R., Hu, L. et al. Bestimmung von hydraulischen Parametern in Lockergesteinen: Ein Vergleich unterschiedlicher Feldmethoden. Grundwasser 17, 57–67 (2012). https://doi.org/10.1007/s00767-011-0185-6

Download citation

Keywords

  • Direct-Push
  • Multi-level slug tests
  • Short-term pumping tests
  • Hydraulic tomography