Advertisement

Grundwasser

, Volume 17, Issue 2, pp 57–67 | Cite as

Bestimmung von hydraulischen Parametern in Lockergesteinen: Ein Vergleich unterschiedlicher Feldmethoden

  • Ralf BrauchlerEmail author
  • Rui Hu
  • Linwei Hu
  • Thomas Ptak
Fachbeitrag

Zusammenfassung

In dieser Feldstudie werden die laufzeitbasierte tomographische Inversion von Daten aus Kurzzeitpumpversuchen mit der analytischen Auswertung verglichen und die ermittelten hydraulischen Parameter hinsichtlich ihrer räumlichen Auflösung diskutiert und bewertet. Als Datenbasis dienen Messergebnisse aus Kurzzeitpumpversuchen, die in einer tomographischen Messanordnung in einem zwei Meter mächtigen, gut charakterisierten Sand- und Kiesgrundwasserleiter unter Verwendung eines 2“-Brunnens und eines Multikammerbrunnens, beide mit Direct-Push-Technik installiert, durchgeführt wurden. Die analytische Auswertung der Kurzzeitpumpversuche hat gezeigt, dass es nicht möglich ist, Bereiche mit unterschiedlichen hydraulischen Eigenschaften voneinander abzugrenzen. Entsprechend einem Vergleich mit den Ergebnissen von Multilevel-Slug-Tests werden die ermittelten hydraulischen Parameter, trotz einer geringen Pumpdauer von 200 Sekunden und hydraulisch isolierten Pump- und Beobachtungsintervallen, von einem hydraulisch höher durchlässigen Bereich am unteren Rand des Grundwasserleiters dominiert. Die laufzeitbasierte tomographische Inversion ermöglicht hingegen, vertikale und laterale Änderungen der Diffusivitätsverteilung zwischen Pump- und Beobachtungsbrunnen hochaufgelöst zu rekonstruieren.

Investigation of hydraulic parameters in unconsolidated sediments: a comparison of methods

Abstract

In this study the potential of a hydraulic travel-time based inversion approach with analytical solutions for the evaluation of short term pumping tests is assessed. The data base comprises measurements from short-term pumping tests performed in a sand and gravel aquifer using a tomographic measurement array. The evaluation, which is based on an analytical solution, has shown that it is not possible to delimit aquifer zones with different hydraulic properties. The comparison with multi-level slug tests has revealed that the pumping test results are dominated by a zone with a relatively high hydraulic conductivity located close to the bottom of the aquifer. This finding is surprising due to the short pumping time of 200 seconds and due to the hydraulically isolated pumping and observation intervals. The travel-time based inversion, however, allows the reconstruction of vertical and lateral changes in hydraulic diffusivity, between pumping and observation wells, with a high resolution.

Keywords

Direct-Push Multi-level slug tests Short-term pumping tests Hydraulic tomography 

Notes

Danksagung

Die vorliegende Arbeit wurde von der Deutschen Forschungsgemeinschaft im Rahmen des Projektes „High resolution aquifer characterization based on Direct-Push technology: An integrated approach coupling hydraulic and seismic tomography“ (Projektnr. BR3379/1-2) finanziert. Die Autoren möchten sich auch für die Unterstützung durch die Stadtwerke Göttingen und das Amt für Umwelt der Stadt Göttingen bedanken.

Literatur

  1. Bohling, G.C., Zhan, X., Butler, J.J. Jr., Zheng, L.: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneous. Water Resour. Res. 38(12), 1324 (2002) CrossRefGoogle Scholar
  2. Bohling, G.C., Butler, J.J. Jr., Zhan, X., Knoll, M.D.: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities. Water Resour. Res. 43(5), W05430 (2007) CrossRefGoogle Scholar
  3. Boman, G.K., Molz, F.J., Boonec, K.D.: Borehole flowmeter application in fluvial sediments: Methodology, results, and assessment. Ground Water 35(3), 443–450 (1997) CrossRefGoogle Scholar
  4. Brauchler, R., Liedl, R., Dietrich, P.: A travel time based hydraulic tomographic approach. Water Resour. Res. 39(12), 1370 (2003) CrossRefGoogle Scholar
  5. Brauchler, R., Cheng, J.-T., Dietrich, P., Everett, M., Johnson, B., Liedl, R., Sauter, M.: An inversion strategy for hydraulic tomography: Coupling travel time and amplitude inversion. J. Hydrol. 345(3–4), 184–198 (2007) CrossRefGoogle Scholar
  6. Brauchler, R., Hu, R., Vogt, T., Al-Halbouni, D., Heinrichs, T., Ptak, T., Sauter, M.: Cross-well slug interference tests: An effective characterization method for resolving aquifer heterogeneity. J. Hydrol. 384(1–2), 33–45 (2010) CrossRefGoogle Scholar
  7. Brauchler, R., Hu, R., Dietrich, P., Sauter, M.: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography. Water Resour. Res. 47, W03503 (2011) CrossRefGoogle Scholar
  8. Butler, J.J. Jr.: The Design, Performance, and Analysis of Slug Tests. Lewis Pub., 252 S. (1998) Google Scholar
  9. Butler, J.J. Jr., Bohling, G.C., Hyder, Z., McElwee, C.D.: The use of slug tests to describe vertical variations in hydraulic conductivity. J. Hydrol. 156(1–4), 137–162 (1994) CrossRefGoogle Scholar
  10. Butler, J.J. Jr., Garnett, E.J., Healey, J.M.: Analysis of slug tests in formations of high hydraulic conductivity. Ground Water 41(5), 620–630 (2003) CrossRefGoogle Scholar
  11. Butler, J.J. Jr., Dietrich, P., Wittig, V., Christy, T.: Characterizing hydraulic conductivity with the Direct-Push permeameter. Ground Water 45(4), 409–419 (2007) CrossRefGoogle Scholar
  12. Cheng, J., Brauchler, R., Everett, M.E.: Comparison of early and late travel times of pressure pulses induced by multilevel slug tests. Eng. Appl. Comput. Fluid Mech. 3(4), 529–541 (2009) Google Scholar
  13. Christy, C.D., Christy, T.M., Wittig, V.: A percussion probing tool for the direct sensing of soil conductivity. In: Proceedings of the 8th National Outdoor Action Conference, Westerville, Ohio. National Ground Water Association, S. 381–394 (1994) Google Scholar
  14. Cooper, H.H., Jacob, C.E.: A generalized graphical method for evaluation formation constants and summarizing well-field history. Trans. - Am. Geophys. Union 27(4), 526–534 (1946) Google Scholar
  15. Danielson, R.E., Sutherland, P.L.: Porosity. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 443–461 (1986) Google Scholar
  16. Datta-Gupta, A., Kulkarni, K.N., Yoon, S., Vasco, D.W.: Streamlines ray tracing and production tomography: Generalization to compressible flow. Pet. Geosci. 7, 75–86 (2001) CrossRefGoogle Scholar
  17. Diem, S., Vogt, T., Hoehn, E.: Räumliche Charakterisierung der hydraulischen Leitfähigkeit in alluvialen Schotter-Grundwasserleitern: Ein Methodenvergleich. Grundwasser 15(4), 241–251 (2010) CrossRefGoogle Scholar
  18. Dietrich, P., Leven, C.: Direct push technologies. In: Kirsch, R. (Hrsg.) Groundwater Geophysics, S. 321–340. Springer, Berlin (2006) CrossRefGoogle Scholar
  19. Dietrich, P., Butler, J.J. Jr., Faiß, K.: A rapid method for hydraulic profiling in unconsolidated formations. Ground Water 46(2), 323–328 (2008) CrossRefGoogle Scholar
  20. Einarson, M.D., Cherry, J.A.: A new multilevel groundwater monitoring system using multichannel tubing. Ground Water Monit. Remediat. 22(4), 52–65 (2002) CrossRefGoogle Scholar
  21. Fetter, W.: Applied Hydrology. Prentice Hall, Upper Saddle River, 691 S. (1994) Google Scholar
  22. Gee, G.W., Bauder, J.W.: Particle-size analysis. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 383–411 (1986) Google Scholar
  23. Gilbert, P.: Iterative methods for three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36(1), 105–117 (1972) CrossRefGoogle Scholar
  24. Gottlieb, J., Dietrich, P.: Identification of the permeability distribution in soil by hydraulic tomography. Inverse Probl. 11(2), 353–360 (1995) CrossRefGoogle Scholar
  25. Hantush, M.S.: Hydraulic of wells. In: Chow, V.T. (Hrsg.) Advances in Hydroscience. Academic Press, New York, S. 281–442 (1964) Google Scholar
  26. He, Z., Datta-Gupta, A., Vasco, D.W.: Rapid inverse modeling of pressure interference tests using trajectory-based traveltime and amplitude sensitivities. Water Resour. Res. 42, W03419 (2006) CrossRefGoogle Scholar
  27. Hvorslev, M.J.: Time lag and soil permeability. In: Ground water observations, U.S. Army Corps of Eng. Waterways Exper. Sta. Bull 36 (1951) Google Scholar
  28. Hu, R.: Hydraulic tomography: a new approach coupling hydraulic travel time, attenuation and steady shape inversions for high-spatial resolution aquifer characterization. Hochschulschrift: Göttingen, Univ., Diss., 116 S. (2011) Google Scholar
  29. Hu, R., Brauchler, R., Herold, M., Bayer, P.: Hydraulic tomography analogue study: Coupling travel time and steady shape inversion. J. Hydrol. 409(1–2), 350–362 (2011). doi: 10.1016/j.jhydrol.2011.08.031 CrossRefGoogle Scholar
  30. Illman, W.A., Liu, X., Craig, A.: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: Multi-method and multiscale validation of hydraulic conductivity tomograms. J. Hydrol. 341(3–4), 222–234 (2007) CrossRefGoogle Scholar
  31. Illman, W.A., Liu, X., Takeuchi, S., Yeh, T.J., Ando, K., Saegusa, H.: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan. Water Resour. Res. 45, W01406 (2009) CrossRefGoogle Scholar
  32. Illman, W.A., Zhu, J., Craig, A.J., Yin, D.: Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study. Water Resour. Res. 46, W04502 (2010) CrossRefGoogle Scholar
  33. Kabala, Z.J.: The dipole flow test: A new single borehole test for aquifer characterization. Water Resour. Res. 29(1), 99–107 (1993) CrossRefGoogle Scholar
  34. Klute, A., Dirksen, C.: Hydraulic conductivity and diffusivity: Laboratory methods. In: Klute, A. (Hrsg.) Methods of Soil Analysis, Part 1. Physical Mineralogical Methods. Agronomy Monograph, Bd. 9, American Soc. of Agronomy, S. 687–734 (1986) Google Scholar
  35. Kulkarni, K.N., Datta-Gupta, A., Vasco, D.W.: A streamline approach to integrating transient pressure data into high resolution reservoir models. In: SPE European Petroleum Conference, 24–25 October 2000, Paris, France. SPE Journal, 6(3) (2001) Google Scholar
  36. Lessoff, S.C., Schneidewind, U., Leven, C., Blum, P., Dietrich, P., Dagan, G.: Spatial characterization of the hydraulic conductivity using direct-push injection logging. Water Resour. Res. 46, W12502 (2010) CrossRefGoogle Scholar
  37. Leven, C., Dietrich, P.: What information can we get from pumping tests? Comparing pumping test configurations using sensitivity coefficients. J. Hydrol. 319(1–4), 199–215 (2006) CrossRefGoogle Scholar
  38. Li, W., Nowak, W., Cirpka, O.A.: Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown. Water Resour. Res. 41(8), W08403 (2005) CrossRefGoogle Scholar
  39. Li, W., Englert, A., Cirpka, O.A., Vanderborght, J., Vereecken, H.: 2-D characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour. Res. 43(4), W04433 (2007) CrossRefGoogle Scholar
  40. Liu, S., Yeh, T.-C.J., Gardiner, R.: Effectiveness of tomography: Sandbox experiments. Water Resour. Res. 38(4), 000 (2002) CrossRefGoogle Scholar
  41. Liu, X., Illman, W.A., Craig, A.J., Zhu, J., Yeh, T.-C.J.: Laboratory sandbox validation of transient hydraulic tomography. Water Resour. Res. 43, W05404 (2007) CrossRefGoogle Scholar
  42. Liu, G., Butler, J.J. Jr., Bohling, G.C., Reboulet, E., Knobbe, S., Hyndman, D.W.: A new method for high-resolution characterization of hydraulic conductivity. Water Resour. Res. 45, W08202 (2009) CrossRefGoogle Scholar
  43. McDermott, C., Sauter, M., Liedl, R.: New experimental techniques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples. J. Hydrol. 278, 51–63 (2003) CrossRefGoogle Scholar
  44. Melville, J.G., Molz, F.J., Guven, O., Widdowson, M.A.: Multilevel slug tests with comparison to tracer data. Ground Water 29(6), 897–907 (1991) CrossRefGoogle Scholar
  45. Molz, F.J., Morin, R.H., Hess, A.E., Melville, J.G., Guven, O.: The impeller meter for measuring aquifer permeability variations: Evaluation and comparison with other tests. Water Resour. Res. 25(7), 1677–1683 (1989) CrossRefGoogle Scholar
  46. Molz, F.J., Young, S.C.: Development and application of borehole flowmeters for environmental assessment. Log Anal. 34(1), 13–23 (1993) Google Scholar
  47. Peursem, D.V., Zlotnik, V.A., Ledder, G.: Groundwater flow near vertical recirculatory wells: Effect of skin on flow geometry and travel times with implications for aquifer remediation. J. Hydrol. 222(1–4), 109–122 (1999) CrossRefGoogle Scholar
  48. Peterson, J.E., Paulsson, B.N.P., McEvilly, T.V.: Application of algebraic reconstruction techniques to crosshole seismic data. Geophysics 50, 1566–1580 (1985) CrossRefGoogle Scholar
  49. Rovey, C.W.II., Niemann, W.L.: Discussion of “Relationship between pumping-test and slug-test parameters: Scale effects or artifact?” by Butler, J.J. Jr. and Healy, J.M. in Ground Water 36(2), 305–313. Ground Water 36(6), 866–867 (1998) Google Scholar
  50. Schulmeister, M.K., Butler, J.J. Jr., Healey, J.M., Zheng, L., Wysocki, D.A., McCall, W.: Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monit. Remediat. 23(3), 52–62 (2003) CrossRefGoogle Scholar
  51. Straface, S., Yeh, T.-C.J., Zhu, J., Troisi, S., Lee, C.H.: Sequential aquifer tests at a well field. Montalto Uffugo Scalo, Italy. Water Resour. Res. 43, W07432 (2007) CrossRefGoogle Scholar
  52. Streltsova, T.: Well Testing in Heterogeneous Formations. Exxon Monographs, 413. Wiley, New York (1989) Google Scholar
  53. Sudicky, E.A., Huyakorn, P.S.: Contaminant migration in imperfect known heterogeneous groundwater systems. US Natl. Rept. Int. Union Geol. Geophys. 1987–1990. Rev. Geophys. 29, 240–253 (1991) Google Scholar
  54. Teutsch, G., Klingbeil, R., Kleineidam, R.: Numerical modeling of reactive transport using aquifer analogue data. In: GQ’98: Groundwater Quality Conference, Tübingen. IAHS Publ. 250, S. 381–390 (1998) Google Scholar
  55. Vasco, D.W., Karasaki, K.: Interpretation and inversion of low-frequency head observations. Water Resour. Res. 42, W05408 (2006) CrossRefGoogle Scholar
  56. Vasco, D.W., Keers, H., Karasaki, K.: Estimation of reservoir properties using transient pressure data: An asymptotic approach. Water Resour. Res. 36(12), 3447–3465 (2000) CrossRefGoogle Scholar
  57. Vesselinov, V.V., Neumann, S.P., Illmann, W.A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff. 1. Methodology. Water Resour. Res. 37(12), 3001–3017 (2001a) CrossRefGoogle Scholar
  58. Vesselinov, V.V., Neumann, S.P., Illmann, W.A.: Three-dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff. 2. Equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour. Res. 37(12), 3019–3041 (2001b) CrossRefGoogle Scholar
  59. Virieux, J., Flores-Luna, C., Gibert, D.: Asymptotic theory for diffusive electromagnetic imaging. Geophys. J. Int. 119(3), 857–868 (1994) CrossRefGoogle Scholar
  60. Wu, C.-M., Yeh, T.-C.J., Zhu, J., Lee, T.H., Hsu, N.-S., Chen, C.-H., Sancho, A.F.: Traditional analysis of aquifer tests: Comparing apples to oranges? Water Resour. Res. 41, W09402 (2005) CrossRefGoogle Scholar
  61. Yeh, T.-C.J., Liu, S.: Hydraulic tomography: Development of a new aquifer test method. Water Resour. Res. 36(8), 2095–2105 (2000) CrossRefGoogle Scholar
  62. Young, S.C., Pearson, H.S.: The electromagnetic borehole flowmeter: Description and application. Ground Water Monit. Remediat. 15(2), 138–146 (1995) CrossRefGoogle Scholar
  63. Zheng, C., Gorelick, S.M.: Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale. Ground Water 41(2), 142–155 (2003) CrossRefGoogle Scholar
  64. Zlotnik, V.A., Ledder, G.: Theory of dipole flow in uniform anisotropic aquifers. Water Resour. Res. 32(4), 1119–1128 (1996) CrossRefGoogle Scholar
  65. Zlotnik, V.A., Zurbuchen, B.R.: Dipole probe: Design and field applications of a single-borehole device for measurements of vertical variations of hydraulic conductivity. Ground Water 36(6), 884–893 (1998) CrossRefGoogle Scholar
  66. Zlotnik, V., Zurbuchen, B., Ptak, T.: The steady-state dipole-flow test for characterization of hydraulic conductivity statistics in a highly permeable aquifer: Horkheimer Insel site, Germany. Groundwater 39(4), 504–516 (2001) CrossRefGoogle Scholar
  67. Zhu, J., Yeh, T.-C.J.: Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour. Res. 41, W07028 (2005) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Ralf Brauchler
    • 1
    Email author
  • Rui Hu
    • 2
  • Linwei Hu
    • 2
  • Thomas Ptak
    • 2
  1. 1.Department ErdwissenschaftenEidgenössische Technische Hochschule ZürichZürichSchweiz
  2. 2.Geowissenschaftliches ZentrumUniversität GöttingenGöttingenDeutschland

Personalised recommendations