Skip to main content
Log in

Fallstudie zur Ableitung einer kritischen Messstellenanzahl zur Schadstofffahnencharakterisierung bei unterschiedlichen Qualitätsansprüchen

Case study to derive a critical number of monitoring wells for plume characterization at different quality standards

  • Fachbeitrag
  • Published:
Grundwasser Aims and scope Submit manuscript

Kurzfassung

Die Frage nach der Anzahl erforderlicher Messstellen für ausreichend genaue Fahnenkartierungen wurde bisher für realitätsnahe Schadstofffahnen nur begrenzt bearbeitet. Mit numerischen Transportsimulationen wurde in Abhängigkeit der hydraulischen Heterogenität anhand von Schadensfall-Typszenarien, die Abhängigkeit zwischen Erkundungsqualität, ausgedrückt als Ähnlichkeit zu einem virtuellen Schadensfall, und der Messstellendichte untersucht. Dabei wurde auf einer für Altlastenstandorte typischen Skala (hier 500 m × 150 m) ein oberer Grenzbereich in der Größenordnung von 50 Stützstellen ermittelt, der als erster Richtwert für eine Schadstofffahnenkartierung an realen Standorten unter ähnlichen Randbedingungen angesehen werden kann. Die Verwendung von weniger Stützstellen führt zu einem deutlichen Verlust an Erkundungsqualität bei steigender Unsicherheit. Ein positiver Einfluss auf die Qualität der Fahnenerkundung durch quellnahe Beprobungen und somit eine bessere räumliche Abgrenzung des Eintragsbereiches konnte zudem bestehende Erkenntnisse bestätigen. Im Bezug auf den Nachweis einer Fahnenstationarität ist eine quantitative Aussage zumindest bei den untersuchten gering heterogenen Aquiferen erst ab 50 Stützstellen mit einem Fehler von weniger als 16 % möglich.

Abstract

The number of observation points required to accurately map a field-scale contaminant plume is rarely known. The aim of this study was to identify the quality of a field site investigation as a function of aquifer heterogeneity and the number of monitoring wells by using virtual contamination scenarios. About 50 observation wells are shown to be needed for a plume mapping at a typical contaminated site scale. Using less monitoring wells leads to a significant decrease in the investigation quality coupled with an increase in uncertainty. This order of magnitude can be used as a first approximate value or upper limit for plume mapping at real sites with similar conditions. Furthermore, the results support existing concepts that investigations near and downstream of the source area could be very useful to increase the quality of a field investigation program. Identifying a steady-state plume, which is one of the most important criteria for accepting monitored natural attenuation at contaminated sites, requires more than 50 observation wells to drop the error below 16 %, at least for the less heterogeneous aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Ababou, R., McLaughlin, D., Gelhar, L. W., Tompson, A. F. B.: Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media.- Transport in Porous Media 4, 549–565 (1989)

    Article  Google Scholar 

  • Angulo, M., Tang, W. H.: Optimal ground-water detection monitoring system design under uncertainty.- Journal of Geotechnical and Geoenvironmental Engineering 125(6), 510–517 (1999)

    Article  Google Scholar 

  • Bauer, S., Beyer, C., Chen, C., Dahmke, A., Gronewold, J., Schäfer, D., Stender, T., Kolditz, O.: Die „Virtuelle Fahnenerkundung“ – eine Methode zur Ermittlung der Unsicherheit bei der Schadstofffahnenerkundung. 7. Symposium Natural Attenuation. Dechema. Frankfurt a. M., 102–104 (2005)

  • Beyer, C., Bauer, S., Kolditz, O.: Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers.- Journal of Contaminant Hydrology 87, 73–95 (2006)

    Article  Google Scholar 

  • Beyer, C., Chen, C., Gronewold, J., Kolditz, O., Bauer, S.: determination of first-order degradation rate constants from monitoring networks.- Ground Water 45(6), 774–785 (2007)

    Article  Google Scholar 

  • Burger, H., Schafmeister, M.-T.: Gerichtete Interpolation zur verbesserten Darstellung strömungsabhängiger Parameter.- Grundwasser 5(2), 79–85 (2000)

    Article  Google Scholar 

  • Cameron, K., Hunter, P.: Using spatial models and kriging techniques to optimize long-term groundwater monitoring networks: a case study.- Environmetrics 13, 629–656 (2002)

    Article  Google Scholar 

  • Dietrich, P., Leven, C.: Direct push-technologies.- In: Groundwater geophysics, 321–340; Springer, Berlin, Heidelberg (2006)

  • Gelhar, L. W., Axness, C. L.: Three-dimensional stochastic analysis of macrodispersion in aquifers.- Water Resources Research 19(1), 161–180 (1983)

    Article  Google Scholar 

  • Harbaugh, A. W., Banta, E. R., Hill, M. C., McDonald, M. G.: MODFLOW-2000, the U. S. Geological Survey modular ground-water model – User guide to modularization concepts and the ground-water flow process. Reston, VA20192.- U. S. Geological Survey Open-File Report 00-92, 121 (2000)

  • Hassig, N. L., Wilson, J. E., Gilbert, R. O., Carlson, D. K., O’Brien, R. F., Pulsipher, B. A., McKinstry, C. A., Bates, D. J.: Visual Sample Plan – Version 2.0 – User’s Guide. Richland, Washington. Pacific Northwest National Laboratory, Battelle Memorial Institute, 95 (2002)

  • Haug, A., Petrini, R. H., Grisak, G. E., Klahsen, K.: Application of geostatistical methods to assess position and spacing of groundwater monitoring wells. Petroleum hydrocarbons and organic chemicals in groundwater: prevention, detection and restoration.- National Water Well Association (1989)

  • Herfort, M., Ptak, T., Hümmer, O., Teutsch, G., Dahmke, A.: Testfeld Süd: Einrichtung der Testfeldinfrastruktur und Erkundung hydraulisch-hydrogeochemischer Parameter des Grundwasserleiters.- Grundwasser 3(4), 159–166 (1998)

    Article  Google Scholar 

  • Herold, M., Ptak, T., Wendel, T., Grathwohl, P.: Integrale Quantifzierung von Schadstoffmassenflüssen im Grundwasser – Konditionierung der numerischen Inversion der Konzentrationsganglinien von Immissionspumpversuchen.- Grundwasser 13(1), 4–14 (2008)

    Article  Google Scholar 

  • Hess, K. M., Wolf, S. H., Celia, M. A.: Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts, 3. Hydraulic conductivity variability and calculated macrodispersivities.- Water Resources Research 28(8), 2011–2027 (1992)

    Article  Google Scholar 

  • Hudak, C. M.: A method for monitoring ground water quality near waste storage facilities.- Environmental Monitoring & Assessment 30, 197–210 (1994)

    Article  Google Scholar 

  • Hudak, P. F.: Effective contaminant detection networks in uncertain groundwater flow fields.- Waste Management 21, 309–312 (2001)

    Article  Google Scholar 

  • Hudak, P. F.: Efficiency comparison of graphical approaches for designing contaminant detection networks in groundwater.- Water Resources Research 38(12), 18.1–18.5 (2002)

    Google Scholar 

  • Hudak, P. F.: Sensitivity of groundwater monitoring networks to contaminant source for various seepage velocities.- Water Resources Research 41(8), W08501 1-4 (2005)

    Google Scholar 

  • Hudak, P. F., Loaiciga, H. A.: A location modeling approach for groundwater monitoring network augmentation.- Water Recources Research 28, 643–649 (1993)

    Article  Google Scholar 

  • ITVA. Arbeitshilfe Monitored Natural Attenuation.- ITVA-Arbeitshilfe H1-12.32; Berlin (2004)

  • Jarsjö, J., Bayer-Raich, M., Ptak, T.: Monitoring groundwater contamination and delineating source zones at industrial sites: Uncertainty analyses using integral pumping tests.- Journal of Contaminant Hydrology 79, 107–134 (2005)

    Article  Google Scholar 

  • Kübert, M., Finkel, M.: Contaminant mass discharge estimation in groundwater based on multi-level point measurements: A numerical evaluation of expected errors.- Journal of Contaminant Hydrology 84, 55–80 (2006)

    Article  Google Scholar 

  • LABO. Berücksichtigung natürlicher Schadstoffminderungsprozesse bei der Altlastenbearbeitung. LABO – Bund/Länder-Arbeitsgemeinschaft Bodenschutz: Positionspapier 27 (2005)

  • Liedl, R., Teutsch, G.: Statistische Absicherung der Probenahme bei der Gefahrenherderkundung. Tübingen. Eberhard-Karls-Universität Tübingen: Abschlussbericht. LAG 98-01/0460. 78 (1998)

  • Ling, M., Rifai, H. S., Newell, C. J.: Optimzing groundwater long-term monitoring networks using Delauny triangulation spatial analysis techniques.- Environmetrics 16, 635–657 (2005)

    Article  Google Scholar 

  • Loaiciga, H. A., Charbeneau, R. J., Everett, L. G., Graham, E. F., Hobbs, B. J., Rouhani, S.: Review of ground-water quality monitoring network design.- Journal of Hydraulic Engineering 118, 11–37 (1992)

    Article  Google Scholar 

  • Mahar, P. S., Datta, B.: Optimal monitoring network and ground-water–pollution source identification.- J. Water Resour. Plng. and Mgmt. 123(4), 199–207 (1997)

    Article  Google Scholar 

  • McNab Jr., W. W., Rice, D. W., Bear1, J., Ragaini, R., Tuckfield, C., Oldenburg, C.: Historical case analysis of chlorinated volatile organic compound plumes. Livermore, California 94551. Lawrence Livermore National Laboratory, University of California. UCRL-AR-133361, 181 (1999)

  • Meyer, P. D., Brill, E. D.: A method for locating wells in a goundwater monitoring network under conditions of uncertainty.- Water Resources Research 24(8), 1277–1282 (1988)

    Article  Google Scholar 

  • Meyer, P. D., Valocchi, A. J., Eheart, J. W.: Monitoring network design to provide initial detection of groundwater contamination.- Water Resources Research 30(9), 2647–2659 (1994)

    Article  Google Scholar 

  • Montas, H. J., Mohtar, R. H., Hassan, A. E., AlKhal, F. A.: Heuristic space-time design of monitoring wells for contaminant plume characterisation in stochastic flow fields.- Journal of Contaminant Hydrology 43, 271–301 (2000)

    Article  Google Scholar 

  • OWL: Optimal well locator. US EPA (2004)

  • Reed, P., Minsker, B., Valocchi, A.: Cost-effective long-term groundwater monitoring design using a genetic algorithm and global mass interpolation.- Water Recources Research 36(12), 3731–3741 (2000)

    Article  Google Scholar 

  • Rehfeldt, K. R., Boggs, J. M., Gelhar, L. W.: Field study of dispersion in a heterogeneous aquifer, 3, geostatistical analysis of hydraulic conductivity.- Water Recources Research 28(12), 3309–3324 (1992)

    Article  Google Scholar 

  • Robin, M. J. L., Gutjahr, A. L., Sudicky, E. A., Wilson, J. L.: Cross-correlated random field generation with the direct fourier transform method.- Water Resources Research 29(7), 2385–2397 (1993)

    Article  Google Scholar 

  • Rouhani, S., Hall, T. J.: Geostatistical schemes for groundwater sampling.- Journal of Hydology 103, 85–102 (1998)

    Article  Google Scholar 

  • SADA: Spatial analysis and decision assistance. The Institute for Environmental Modeling, University of Tennessee (2002)

  • Schad, H.: Variability of hydraulic parameters in non-uniform porous media: Experiments and stochastic modelling at different scales.- Tübinger Geowissenschaftliche Arbeiten, Reihe C(35), 233 (1997)

  • Schäfer, D., Dahmke, A., Kolditz, O., Teutsch, G.: The „Virtual Aquifers“ – Concept as a tool for evaluation of exploration, remediation and monitoring strategies.- In: DFG geochemical processes, conceptual models for reactive transport in soil and groundwater, 154–172; Wiley-VCH, Weinheim (2002)

  • Schäfer, D., Schlenz, B., Dahmke, A.: Evaluation of exploration and monitoring methods for verification of natural attenuation using the virtual aquifer approach.- Biodegradation 15(6), 453–465 (2004)

    Article  Google Scholar 

  • Schäfer, W.: Numerische Modellierung mikrobiell beeinflusster Stofftransportvorgänge im Grundwasser.- 156; München (1992)

  • Storck, P., Eheart, J. W., Valocchi, A. J.: A method for the optimal location of monitoring wells for detection of groundwater contamination in three-dimensional heterogenous aquifers.- Water Recources Research 33(9), 2081–2088 (1997)

    Article  Google Scholar 

  • Suarez, M. P., Rifai, H. S., Rittaler, T. J., Hausman, S.: Natural attenuation of chlorinated solvent plumes at texas dry cleaners. Wiley Interscience (www.interscience.wiley.com),Wiley Periodicals, Inc (2004)

  • Sudicky, E. A.: A natural gradient experiment on solute transport in sand aquifer: spacial variability of hydraulic conductivity and its role in the dispersion process.- Water Resources Research 22(13), 2069–2082 (1986)

    Article  Google Scholar 

  • Teutsch, G., Ptak, T., Schwarz, R., Holder, T.: Ein neues integrales Verfahren zur Quantifizierung der Grundwasserimmission, Teil I: Beschreibung der Grundlagen.- Grundwasser 5(4), 170–175 (2000)

    Article  Google Scholar 

  • U. S.EPA: Groundwater sampling and monitoring with direct push technologies. Washington, D. C. Office of Solid Waste and Emergency Response: Report. EPA 540/R-04/005. 78 (2005)

  • Vereecken, H., Döring, U., Hardelauf, H., Jaeckel, U., Hashagen, U., Neuendorf, O., Schwarze, H., Seidemann, R.: Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment.- Journal of Contaminant Hydrology 45, 329–358 (2000)

    Article  Google Scholar 

  • Wachter, T., Dethlefsen, F., Gödeke, S., Dahmke, A.: Räumlich-statistische Charakterisierung der Hydrogeochemie einer BTEX-Grundwasserkontamination am Standort „RETZINA“/Zeitz.- Grundwasser 9(1), 21–32 (2004)

    Article  Google Scholar 

  • Wiedemeier, T. H.: Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater.- Parsons Engineering Science, Inc., Denver, Colorado. 1 (1999)

  • Woodbury, A. D., Sudicky, E. A.: The geostatistical characteristics of the Borden aquifer.- Water Resources Research 27(4), 533–546 (1991)

    Article  Google Scholar 

  • Wu, J., Zheng, C., Chien, C. C.: Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions.- Journal of Contaminant Hydrology 77, 41–65 (2005)

    Article  Google Scholar 

  • Wu, J., Zheng, C., Chien, C. C., Zheng, L.: A comparative study of Monte Carlo simple genetic algorithm and noisy genetic algorithm for cost-effective sampling network design under uncertainty.- Advances in Water Resources 29, 899–911 (2006)

    Article  Google Scholar 

  • Zheng, C.: MT3DMS v5.2 – Supplemental user’s guide. U. S. Army Engineer Research and Development Center, Department of Geological Sciences: Technical Report, 24 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hornbruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornbruch, G., Schäfer, D. & Dahmke, A. Fallstudie zur Ableitung einer kritischen Messstellenanzahl zur Schadstofffahnencharakterisierung bei unterschiedlichen Qualitätsansprüchen. Grundwasser 14, 81–95 (2009). https://doi.org/10.1007/s00767-009-0101-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-009-0101-5

Keywords

Navigation