Skip to main content
Log in

Einfluss des Grundwassers auf die Schadenswirkung von Erdbeben – ein Überblick

The influence of groundwater on damage caused by earthquakes – an overview

  • Fachbeiträge
  • Published:
Grundwasser Aims and scope Submit manuscript

Kurzfassung

Die vorliegende Arbeit gibt einen Überblick über den derzeitigen Kenntnisstand zum Einfluss lokaler hydrogeologischer Verhältnisse auf das seismische Verhalten des Untergrundes und versucht den Forschungsbedarf in diesem Grenzbereich von Hydrogeologie und Seismologie aufzuzeigen. Standorteffekte können bei Starkbeben, auch bei großen und relativ gleichbleibenden Hypozentralentfernungen für ein Gebiet sehr verschieden sein. Die resultierenden, oft unterschiedlichen Schadensfolgen sind eindeutig von den lokalen geologischen und hydrogeologischen Gegebenheiten des Untergrundes abhängig. Diese bestimmen die Amplitude, den Frequenzinhalt und die Dauer der Bodenbewegung an einem Standort. Unterschiedliche Grundwasserstände können durch die Änderung der Scherwellengeschwindigkeit in Lockergesteinen die lokalen Antwortspektren der Bodenbewegung beeinflussen. Darüber hinaus haben Grundwasserstandsschwankungen einen beträchtlichen Einfluss auf das Verflüssigungspotenzial oberflächennaher sandiger Schichten. Durch In-situ-Porenwasserdruckmessungen in Aquiferen kann der Vorgang der Bodenverflüssigungen durch Erdbeben dokumentiert werden.

Abstract

This paper provides an overview of current understanding regarding the influence of local hydrogeologic conditions on seismic ground motion. The topic links both, hydrogeology and seismology given that variability in earthquake- induced damage is mainly determined by the local geological and hydrogeological conditions. These conditions, intern influence the amplitude, the frequency and duration of ground motion at a site. Groundwater level variations and associated saturation changes in sand layers within near-surface aquifers can influence local response spectra of the ground motion, through modification of shear-wave velocity. Changes of the groundwater level can also have a considerable influence upon the liquefaction potential of a region. Special attention is drawn to insitu pore-water pressure responses in aquifers during earthquakes, to observe and explain the triggering mechanism of liquefaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Adalier, K., Aydinguin, O. (2000): Liquefaction during the June 27, 1998 Adana-Ceyan (Turkey) earthquake.- Geotechn. and Geol. Engineering 18: 155–174.

    Google Scholar 

  2. Bendel, L. (1949): Ingenieurgeologie, Band I; Wien.

  3. Bender, F. (1984): Angewandte Geowissenschaften, Band III; Stuttgart.

  4. Biot, M.A. (1956): Theory of propagation of elastic waves in a fluid saturated porous solid.- Journal of Acoustic Soc. of America 28: 168–191.

    Google Scholar 

  5. Broughton, A., Van Arsdale, R., Broughton, J. (2001): Liquefaction susceptibility mapping in the city of Memphis and Shelby County, Tennessee.-Engineering Geology 62: 207–222.

    Google Scholar 

  6. Bühler, M.M., Cudmani, R., Libreros-Bertini, A.-B., Osinov, V.A., Gudehus, G. (2003): Experimental and numerical investigation of the influence of local site conditions on the ground motion during strong earthquakes. University of Karlsruhe, IBF.

  7. Chen, C.J., Juang, C.H. (2000): Calibration of SPT- and CPT-based liquefaction evaluation methods.- In: Mayne, P.W., Hryciw, R. (Hrsg.): Innovations and Applications in Geotech. Site Charact. Geotechn. Special Public. 97: 49–64, ASCE, Reston, VA

  8. Chu, B.-L., HSU, S.-C., Chang,Y.-M. (2003): Ground behavior and liquefaction analyses in central Taiwan-Wufeng.-Engineering Geology 71: 119–139.

  9. Cudmani, R., Osinov, V., Bühler, M.M., Libreros, A.-B., Gudehus, G. (2003): A model for evaluation of liquefaction susceptibility in layered soils due to earthquakes. Proceedings of the 12th Panamerican Conference on SMGE, Cambridge USA, vol.II: 969–976.

  10. Gudehus, G. (1993): Spontaneous liquefaction of saturated granular bodies.-In: Kolymbas, D. (Hrsg.) Modern Approaches to Plasticity: 213–223; Amsterdam.

  11. Gudehus, G., Külzer, M. (2002): Einfluss von Ionen und Gasblasen auf die Kollapsneigung feinstkörniger Böden.- Geotechnik 25 (1): 12–20.

  12. Gudehus, G. (2004): A visco-hypoplastic constitutive relation for soft soils. Soils and Foundations, Jap. Soc.

  13. Harmsen, S.C. (1997): Determination of site amplification in the Los Angeles Urban Area from inversion of strong-motion records.- Bull. of Seismol. Society of America 87 (4): 866–887.

    Google Scholar 

  14. Hegazy, A.A., Mayne, P.W. (1995): Statistical correlations between vs and cone penetration data for different soil types. Proceedings CPT’95.

  15. Housner, G.W. (1958): The mechanism of sandblows.-Bull. Seism. Soc. Am. 48: 155–161.

    Google Scholar 

  16. Ishihara, K. (1985): Stability of natural deposits during earthquake. Proceedings of the 11-th Int. Conf. on Soil Mech. And Found. Eng. 1: 321–376; San Francisco, CA.

  17. Ishihara, K. (1993): Liquefaction and flow failure during earthquaes. Geotechnique 43 (3): 351–415.

    Google Scholar 

  18. Iwasaki, T., Arakawa, T., Tokida, K. (1982): Simplified procedures for assessing soil liquefaction during earthquakes. Proceedings of the Conf. on Soil Dynamics and Earthquake Engineering: 925–939; Southampton, UK.

  19. Jäckli, H. (1978): Schwankungen des Grundwasserspiegels als Folge von Erdbeben.-Vierteljahresschrift der Naturf. Ges. in Zürich 123: 291–286.

  20. Joyner, W.B., Fumal, T.E. (1985): Predictive mapping of earthquake ground motion.-U.S. Geol. Survey Prof. Paper 1360: 203–220.

  21. Kramer, S.L. (1996): Geotechnical earthquake engineering. University of Washington, Prentice-Hall International series in Civil Engineering and Engineering Mechanics.

  22. Lee, D.-H., Ku, C.-S., Yuan, H. (2003): A study of the liquefaction risk potential at Yanlin, Taiwan. Engineering Geology 71: 97–117.

    Google Scholar 

  23. Lungu,D.,Aldea,A.,Moldoveanu, T.,Ciugudean,V.,Stefanica, M. (1999): Surface geology and dynamic properties of soil layers in Bucharest.- In: Wenzel, F., Lungu, D., Novak, O. (Hrsg.): Vrancea Earthquakes: 137–148; Dorrecht.

  24. Medvedev, S.V. (1965): Engineering Seismology; Moscow.

  25. Muir-Wood, R., King, G.C.P. (1993): Hydrological signatures of earthquake strain.-J. Geophys. Res. 98 (B12): 22035–22068.

    Google Scholar 

  26. Perlea, V., Perlea, M. (1984): Die dynamische Stabilität sandiger Böden (in Rumänischer Sprache). Editura Tehnica, Bucuresti.

  27. Rexin, E.E., Oliver, J., Prentiss, D. (1962): Seismically-induced fluctuations of the water level in Milwaukee.- Bull. Seism. Soc. Am. 52 (1): 17–25.

    Google Scholar 

  28. Roeloffs, E. (1996): Poroelastic techniques in the study of earthquakerelated hydrologic phenomena, Advances in Geophys. 37: 137–195; Washington.

    Google Scholar 

  29. Rumänische Normen (1996): Normativ für die antiseismische Planung von Tunnels im Strassen-und Bahnverkehr (in Rumänischer Sprache). Technische Universität für Bauingenieurwesen (UTCB), Bukarest.

  30. Schnabel, B., Lysmer, J., Seed, H.B. (1972): SHAKE. A computer program for earthquake response analysis of horizontally layered sites. College of Engineering, University of California, Berkeley, Report EERC 72–12.

  31. Schön, J.H. (1983): Petrophysik; Stuttgart.

  32. Schön, J.H. (1996): Physical properties of rocks; Oxford.

  33. Seed, B., Idriss, I.M. (1971): Simplified procedure for evaluating soil liquefaction potential.- J. of Soil Mech. and Fdn. Engngn., Am. Soc. Civ. Engrs. 97, SM9: 1249–1273.

    Google Scholar 

  34. Shibata, T., Teparaksa, W. (1988): Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations 28 (2): 49–60

    Google Scholar 

  35. Stark, T.D., Köller, M.G. (1997): Liquefaction resistance using CPT and field case histories.-J. of Geotechn. Engineering 121 (12): 856–869.

    Google Scholar 

  36. Studer, J.A., Koller, M.G. (1997): Bodendynamik, Grundlagen, Kennziffern, Probleme.

  37. Wakita, H. (1975): Water wells as possible indicators of tectonic strain.Science 189: 553–555.

    Google Scholar 

  38. Wakita, H. (1995): Thermal and hydrological signatures related to seismic events in Japan.-Conseil de L’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie 14: 49–64.

  39. Youd, T.L., Perkins, D.M. (1978): Mapping liquefaction-induced ground failure potential.-J. of the geotechn. Engineering Div. 104 (GT4): 433–446.

    Google Scholar 

  40. Youd, L., Holzer, T.L. (1994): Piezometer performance at Wildlife liquefaction site, California.-J. of geotechn. Engineering 120 (6): 975–995.

    Google Scholar 

  41. Yuan, H., Yang, S.H., Andrus, R.D., Juang, C.H. (2003): Liquefactioninduced ground failure: a study of the Chi-Chi earthquake cases.Engineering Geology 17: 141–155.

    Google Scholar 

  42. Zeghal, M., Elgamal, A.-W. (1994): Analysis of site liquefaction using earthquake records.-J. of Geotechn. Engineering 120 (6): 996–1017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dieter Hannich, Heinz Hötzl or Roberto Cudmani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hannich, ., Hötzl, . & Cudmani, R. Einfluss des Grundwassers auf die Schadenswirkung von Erdbeben – ein Überblick. Grundwasser 11, 286–294 (2006). https://doi.org/10.1007/s00767-006-0158-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-006-0158-3

Navigation