Exploring cognitive style and task-specific preferences for process representations


Process models describe someone’s understanding of processes. Processes can be described using unstructured, semi-formal or diagrammatic representation forms. These representations are used in a variety of task settings, ranging from understanding processes to executing or improving processes, with the implicit assumption that the chosen representation form will be appropriate for all task settings. We explore the validity of this assumption by examining empirically the preference for different process representation forms depending on the task setting and cognitive style of the user. Based on data collected from 120 business school students, we show that preferences for process representation formats vary dependent on application purpose and cognitive styles of the participants. However, users consistently prefer diagrams over other representation formats. Our research informs a broader research agenda on task-specific applications of process modeling. We offer several recommendations for further research in this area.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Davies I, Green P, Rosemann M, Indulska M, Gallo S (2006) How do practitioners use conceptual modeling in practice? Data Knowl Eng 58(3):358–380

    Article  Google Scholar 

  2. 2.

    Recker J, Rosemann M, Indulska M, Green P (2009) Business process modeling: a comparative analysis. J Assoc Inf Syst 10(4):333–363

    Google Scholar 

  3. 3.

    Fettke P (2009) How conceptual modeling is used. Commun Assoc Inf Syst 25(43):571–592

    Google Scholar 

  4. 4.

    Kock N, Verville J, Danesh-Pajou A, DeLuca D (2009) Communication flow orientation in business process modeling and its effect on redesign success: results from a field study. Decis Support Syst 46(2):562–575

    Article  Google Scholar 

  5. 5.

    Indulska M, Green P, Recker J, Rosemann M (2009) Business process modeling: perceived benefits. In: Castano S, Dayal U, Laender AHF (eds) Conceptual modeling–ER 2009. Lecture notes in computer science. Springer, Gramado, pp 458–471

    Google Scholar 

  6. 6.

    Wolter C, Meinel C (2010) An approach to capture authorisation requirements in business processes. Requirements Eng 15(4):359–373

    Article  Google Scholar 

  7. 7.

    Phalp KT, Vincent J, Cox K (2007) Improving the quality of use case descriptions: empirical assessment of writing guidelines. Softw Qual J 15(4):383–399

    Article  Google Scholar 

  8. 8.

    Lee J, Wyner GM, Pentland BT (2008) Process grammar as a tool for business process design. MIS Q 32(4):757–778

    Google Scholar 

  9. 9.

    Moody DL (2009) The “Physics” of notations: toward a scientific basis for constructing visual notations in software engineering. IEEE Trans Softw Eng 35(6):756–779

    Article  Google Scholar 

  10. 10.

    Recker J, Safrudin N, Rosemann M (2012) How novices design business processes. Inf Syst 37(6):557–573

    Article  Google Scholar 

  11. 11.

    Boekelder A, Steehouder M (1998) Selecting and switching: some advantages of diagrams over tables and lists for presenting instructions. IEEE Trans Prof Commun 41(4):229–241

    Article  Google Scholar 

  12. 12.

    Coll RA, Coll JH, Thakur G (1994) Graphs and tables: a four-factor experiment. Commun ACM 37(4):76–86

    Article  Google Scholar 

  13. 13.

    Riding R, Cheema I (1991) Cognitive styles—an overview and integration. Educ Psychol: Int J Exp Educ Psychol 11(3):193–215

    Article  Google Scholar 

  14. 14.

    Thomas PR, McKay JB (2010) Cognitive styles and instructional design in university learning. Learn Individ Differ 20(3):197–202

    Article  Google Scholar 

  15. 15.

    Recker J (2010) Opportunities and constraints: the current struggle with BPMN. Bus Process Manag J 16(1):181–201

    Article  MathSciNet  Google Scholar 

  16. 16.

    Dehnert J, van der Aalst WMP (2004) Bridging the gap between business models and workflow specifications. Int J Coop Inf Syst 13(3):289–332

    Article  Google Scholar 

  17. 17.

    Bandara W, Gable GG, Rosemann M (2005) Factors and measures of business process modelling: model building through a multiple case study. Eur J Inf Syst 14(4):347–360

    Article  Google Scholar 

  18. 18.

    Reijers HA, Mendling J (2011) A study into the factors that influence the understandability of business process models. IEEE Trans Syst Man Cybern A 41(3):449–462

    Article  Google Scholar 

  19. 19.

    Simon HA (1996) The sciences of the artificial, 3rd edn. MIT Press, Cambridge

    Google Scholar 

  20. 20.

    Kalpic B, Bernus P (2006) Business process modeling through the knowledge management perspective. J Knowl Manag 10(3):40–56

    Article  Google Scholar 

  21. 21.

    Kim H-W, Kim Y-G (1997) Dynamic process modeling for BPR: a computerized simulation approach. Inf Manag 32(1):1–13

    Article  Google Scholar 

  22. 22.

    Ouyang C, van der Aalst WMP, Dumas M, ter Hofstede AHM, Mendling J (2009) From business process models to process-oriented software systems. ACM Trans Softw Eng Methodol 19(1):2–37

    Article  Google Scholar 

  23. 23.

    Dumas M, La Rosa M, Mendling J, Reijers HA (2013) Fundamentals of business process management. Springer, Berlin

    Google Scholar 

  24. 24.

    Burton-Jones A, Meso P (2008) The effects of decomposition quality and multiple forms of information on novices’ understanding of a domain from a conceptual model. J Assoc Inf Syst 9(12):784–802

    Google Scholar 

  25. 25.

    Mendling J, Strembeck M, Recker J (2012) Factors of process model comprehension: findings from a series of experiments. Decis Support Syst 53(1):195–206

    Article  Google Scholar 

  26. 26.

    Campbell DJ (1988) Task complexity: a review and analysis. Acad Manag Rev 13(1):40–52

    Google Scholar 

  27. 27.

    Akin Ö, Akin C (1998) On the process of creativity in puzzles, inventions, and designs. Autom Constr 7(2–3):123–138

    Article  Google Scholar 

  28. 28.

    Kettinger WJ, Teng JTC, Guha S (1997) Business process change: a study of methodologies, techniques, and tools. MIS Q 21(1):55–80

    Article  Google Scholar 

  29. 29.

    Sarkar P, Chakrabarti A (2008) The effect of representation of triggers on design outcomes. Artif Intell Eng Des Anal Manuf 22(2):101–116

    Article  Google Scholar 

  30. 30.

    Gorla N, Pu H-C, Rom WO (1995) Evaluation of process tools in systems analysis. Inf Softw Technol 37(2):119–126

    Article  Google Scholar 

  31. 31.

    Friedrich F, Mendling J, Puhlmann F (2011) Process model generation from natural language text. In: Mouratidis H, Rolland C (eds) Advanced information systems engineering–CAiSe 2011. Lecture notes in computer science, vol 6741. Springer, London, pp 482–496

    Google Scholar 

  32. 32.

    Blumberg R, Atre S (2003) The problem with unstructured data. DM Rev 13:42–49

    Google Scholar 

  33. 33.

    Cockburn A (2000) Writing effective use cases. Addison-Wesley Longman Publishing Co., Inc

  34. 34.

    Vessey I, Weber R (1986) Structured tools and conditional logic: an empirical investigation. Commun ACM 29(1):48–57

    Article  Google Scholar 

  35. 35.

    Moody DL (2009) The “Physics” of notations: towards a scientific basis for constructing visual notations in software engineering. IEEE Trans Software Eng 35(5):756–779

    Article  MathSciNet  Google Scholar 

  36. 36.

    Curtis B, Sheppard SB, Kruesi-Bailey E, Bailey J, Boehm-Davis DA (1989) Experimental evaluation of software documentation formats. J Syst Softw 9(2):167–207

    Article  Google Scholar 

  37. 37.

    Larkin JH, Simon HA (1987) Why a diagram is (sometimes) worth ten thousand words. Cogn Sci 11(1):65–100

    Article  Google Scholar 

  38. 38.

    Ottensooser A, Fekete A, Reijers HA, Mendling J, Menictas C (2012) Making sense of business process descriptions: an experimental comparison of graphical and textual notations. J Syst Softw 85(3):596–606

    Article  Google Scholar 

  39. 39.

    Masri K, Parker DC, Gemino A (2008) Using iconic graphics in entity-relationship diagrams: the impact on understanding. J Database Manag 19(3):22–41

    Article  Google Scholar 

  40. 40.

    Mendling J, Recker J, Reijers HA (2010) On the usage of labels and icons in business process modeling. Int J Inf Syst Mdel Des 1(2):40–58

    Article  Google Scholar 

  41. 41.

    Malaga RA (2000) The effect of stimulus modes and associative distance in individual creativity support systems. Decis Support Syst 29(2):125–141

    Article  Google Scholar 

  42. 42.

    Zajonc RB, Hazel M (1982) Affective and cognitive factors in preferences. J Consum Res 9(2):123–131

    Article  Google Scholar 

  43. 43.

    Blazhenkova O, Kozhevnikov M (2009) The new object-spatial-verbal cognitive style model: theory and measurement. Appl Cogn Psychol 23(5):638–663

    Article  Google Scholar 

  44. 44.

    Vessey I, Galletta DF (1991) Cognitive fit: an empirical study of information acquisition. Inf Syst Res 2(1):63–84

    Article  Google Scholar 

  45. 45.

    Vessey I (1991) Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis Sci 22(2):219–240

    Article  Google Scholar 

  46. 46.

    Blazhenkova O, Kozhevnikov M (2008) The new object-spatial-verbal cognitive style model: theory and measurement. Appl Cogn Psychol 23(5):638–663

    Article  Google Scholar 

  47. 47.

    Stebbins RA (2001) Exploratory research in the social sciences. Qualitative research methods, vol 48. Sage, Thousand Oaks

    Google Scholar 

  48. 48.

    Kumar S, Karoli V (2011) Handbook of business research methods. Thakur Publishers

  49. 49.

    Recker J, Reijers HA, van de Wouw SG (2014) Process model comprehension: the effects of cognitive abilities, learning style and strategy. Commun Assoc Inf Syst 34(9):199–222

    Google Scholar 

  50. 50.

    Fromkin HL, Streufert S (1976) Laboratory experimentation. Rand McNally College Publishing Company, Chicago

    Google Scholar 

  51. 51.

    Recker J, Mendling J, Hahn C (2013) How collaborative technology supports cognitive processes in collaborative process modeling: a capabilities-gains-outcome model. Inf Syst 38(8):1031–1045

    Article  Google Scholar 

  52. 52.

    Lichtenstein S, Slovic P (eds) (2006) The construction of preference. Cambridge University Press, New York

    Google Scholar 

  53. 53.

    Recker J (2010) Continued use of process modeling grammars: the impact of individual difference factors. Eur J Inf Syst 19(1):76–92

    Article  MathSciNet  Google Scholar 

  54. 54.

    Brehm JW (1956) Post-decision changes in the desirability of alternatives. J Abnorm Soc Psychol 52(3):384–389

    Article  Google Scholar 

  55. 55.

    Ben-Simon A, Budescu DV, Nevo B (1997) A comparative study of measures of partial knowledge in multiple-choice tests. Appl Psychol Meas 21(1):65–88

    Article  Google Scholar 

  56. 56.

    Blajenkova O, Kozhevnikov M, Motes MA (2006) Object-spatial imagery: a new self-report imagery questionnaire. Appl Cogn Psychol 20(2):239–263

    Article  Google Scholar 

  57. 57.

    Kozhevnikov M, Blazhenkova O, Becker M (2010) Trade-off in object versus spatial visualization abilities: restriction in the development of visual-processing resources. Psychon Bull Rev 17(1):29–35

    Article  Google Scholar 

  58. 58.

    Kozhevnikov M, Kozhevnikov M, Yu CJ, Blazhenkova O (2013) Creativity, visualization abilities, and visual cognitive style. Br J Educ Psychol 83(2):196–209

    Article  Google Scholar 

  59. 59.

    Campos A (2014) Gender differences in imagery. Personal Individ Differ 59:107–111

    Article  Google Scholar 

  60. 60.

    Occelli V, Lin JB, Lacey S, Sathian K (2014) Loss of form vision impairs spatial imagery. Front Hum Neurosci 8, Art No 159. doi:10.3389/fnhum.2014.00159

  61. 61.

    Kraemer DJ, Hamilton RH, Messing SB, DeSantis JH, Thompson-Schill SL (2014) Cognitive style, cortical stimulation, and the conversion hypothesis. Front Hum Neurosci 8, Art No 15. doi:10.3389/fnhum.2014.00015

  62. 62.

    Aggarwal I, Woolley AW (2013) Do you see what I see? The effect of members’ cognitive styles on team processes and errors in task execution. Organ Behav Hum Decis Process 122(1):92–99

    Article  Google Scholar 

  63. 63.

    OMG (2010) BPMN 2.0 by example. http://www.omg.org/spec/BPMN/2.0/examples/PDF. Accessed 27 Aug 2014

  64. 64.

    Khatri V, Vessey I, Ramesh V, Clay P, Sung-Jin P (2006) Understanding conceptual schemas: exploring the role of application and is domain knowledge. Inf Syst Res 17(1):81–99

    Article  Google Scholar 

  65. 65.

    Patig S, Casanova-Brito V, Vögeli B (2010) IT requirements of business process management in practice: an empirical study. In: Hull R, Mendling J, Tai S (eds) Business process management: BPM 2010. Lecture notes in computer science, vol 6336. Springer, Hoboken, pp 13–28

    Google Scholar 

  66. 66.

    Reijers HA, Freytag T, Mendling J, Eckleder A (2011) Syntax highlighting in business process models. Decis Support Syst 51(3):339–349

    Article  Google Scholar 

  67. 67.

    zur Muehlen M, Recker J (2008) How much language is enough? Theoretical and practical use of the business process modeling notation. In: Léonard M, Bellahsène Z (eds) Advanced information systems engineering: CAiSE 2008. Lecture notes in computer science. Springer, Montpellier, pp 465–479

    Google Scholar 

  68. 68.

    Saari DG (2000) Mathematical structure of voting paradoxes: II. Positional voting. Econ Theor 15(1):55–102

    Article  MathSciNet  MATH  Google Scholar 

  69. 69.

    Cook C, Heath F, Thompson RL, Thompson B (2001) Score reliability in Webor internet-based surveys: unnumbered graphic rating scales versus Likert-type scales. Educ Psychol Measur 61(4):697–706

    Article  Google Scholar 

  70. 70.

    Gemino A, Wand Y (2004) A framework for empirical evaluation of conceptual modeling techniques. Requirements Eng 9(4):248–260

    Article  Google Scholar 

  71. 71.

    Compeau DR, Marcolin BL, Kelley H, Higgins CA (2012) Generalizability of information systems research using student subjects: a reflection on our practices and recommendations for future research. Inf Syst Res 23(4):1093–1109

    Article  Google Scholar 

  72. 72.

    Runeson P (2003) Using students as experiment subjects: an analysis on graduate and freshmen student data. In: Linkman S (ed) 7th International conference on empirical assessment & evaluation in software engineering, Staffordshire, England. Keele University, pp 95–102

  73. 73.

    Faul F, Erdfelder E, Lang A-G, Axel B (2007) G*Power 3: a flexible statistical power analysis for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191

    Article  Google Scholar 

  74. 74.

    Leys C, Ley C, Klein O, Bernard P, Licata L (2013) Detecting outliers: do not use standard deviation around the mean, use absolute deviation around the median. J Exp Soc Psychol 49(4):764–766

    Article  Google Scholar 

  75. 75.

    Recker J (2013) Empirical investigation of the usefulness of gateway constructs in process models. Eur J Inf Syst 22(6):673–689

    Article  Google Scholar 

  76. 76.

    Figl K, Mendling J, Strembeck M (2013) The influence of notational deficiencies on process model comprehension. J Assoc Inf Syst 14(6):312–338

    Google Scholar 

  77. 77.

    Reijers HA, Mendling J (2011) A study into the factors that influence the understandability of business process models. IEEE Trans Syst Man Cybern A 41:449–462

    Article  Google Scholar 

  78. 78.

    Stevens JP (2001) Applied multivariate statistics for the social sciences. Applied Multivariate STATS, 4th edn. Lawrence Erlbaum Associates, Hillsdale, New Jersey

  79. 79.

    Tabachnick BG, Fidell LS (2007) Using multivariate statistics. Pearson Education Inc, Boston

    Google Scholar 

  80. 80.

    Kozhevnikov M, Hegarty M, Mayer RE (2002) Revising the visualizer-verbalizer dimension: evidence for two types of visualizers. Cogn Instr 20(1):47–77

    Article  Google Scholar 

  81. 81.

    Glenberg AM, Langston WE (1992) Comprehension of illustrated text: pictures help to build mental models. J Mem Lang 31(2):129–151

    Article  Google Scholar 

  82. 82.

    Cheng PC (2004) Why diagrams are (sometimes) six times easier than words: benefits beyond locational indexing. In: Diagrammatic representation and inference. Springer, pp 242–254

  83. 83.

    Scaife M, Rogers Y (1996) External cognition: how do graphical representations work? Int J Hum-Comput Stud 45(2):185–213

    Article  Google Scholar 

  84. 84.

    Mayer RE (2009) Multimedia learning, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  85. 85.

    Shadish WR, Cook TD, Campbell DT (2002) Experimental and quasi-experimental designs for generalized causal inference. Houghton Mifflin Company, Boston

    Google Scholar 

  86. 86.

    Recker J, Dreiling A (2011) The effects of content presentation format and user characteristics on novice developers’ understanding of process models. Commun Assoc Inf Syst 28(6):65–84

    Google Scholar 

  87. 87.

    Reijers HA, Mendling J, Dijkman RM (2011) Human and automatic modularizations of process models to enhance their comprehension. Inf Syst 36(5):881–897

    Article  Google Scholar 

  88. 88.

    Fisher RJ (1993) Social desirability bias and the validity of indirect questioning. J Consum Res 20(2):303–315

    Article  Google Scholar 

  89. 89.

    Paivio A, Harshmann R (1983) Factor analysis of a questionnaire on imagery and verbal habits and skills. Can J Psychol 37(4):461–483

    Article  Google Scholar 

  90. 90.

    Byström K, Järvelin K (1995) Task complexity affects information seeking and use. Inf Process Manage 31(2):191–213

    Article  Google Scholar 

Download references


Dr Recker’s contributions to this research have been supported by a grant from the Australian Research Council (DE120100776).

Author information



Corresponding author

Correspondence to Kathrin Figl.


Appendix: 1

Appendix: 2

Table 7 Participants’ preferences across the four tasks

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figl, K., Recker, J. Exploring cognitive style and task-specific preferences for process representations. Requirements Eng 21, 63–85 (2016). https://doi.org/10.1007/s00766-014-0210-2

Download citation


  • Conceptual modeling
  • Business process modeling
  • Representation forms
  • Model evaluation
  • User preferences
  • Cognitive style