Skip to main content

Advertisement

Log in

Sustainable instrumental thin-layer chromatography-based methodology for standardization of neuroprotective components in propolis collected from India

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Bee propolis is a heterogeneous mixture of phytoactive metabolites with reported antioxidant, anti-inflammatory, and neuroprotective properties. The chemical composition is highly variable, complex and presents the greatest challenge for standardization. So, the study was aimed at standardization of selected phytochemicals in propolis collected from a region in India (IP). A thin-layer chromatography (TLC) method was developed for five markers with prior evidence of neuroprotective activity using orthogonal detection and subsequently validated as per the International Council for Harmonisation ICH Q2 (R1) guidelines. The methodology was assessed for greenness using different metrices and then applied to marketed samples. Furthermore, antioxidant and anticholinesterase activity were evaluated directly using TLC‒bioautography technique. The method was developed using toluene‒ethyl acetate‒formic acid (7.4:2.6:0.5, V/V) as the mobile phase, with RF values of 0.235, 0.353, 0.552, 0.606, and 0.655 for luteolin, p-coumaric acid, chrysin, galangin, and pinocembrin, respectively. The optimized method was found to be precise (%RSD ≤ 2.0%), accurate (90‒110%), linear over the concentration ranges (R2 ≥ 0.995), sensitive and robust. Pinocembrin (2.30 ± 0.12% w/w) and galangin (5.78 ± 0.30% w/w) were found in the highest concentration. TLC‒bioautography analysis confirmed the contribution of the selected phenolics in anticholinesterase and antioxidant activity. The analytical eco-score value of 76, analytical greenness calculator (AGREE) score of 0.62 and other assessed analytical pictograms indicated the methodology developed had low environmental impact. Overall, a simple, rapid, precise, and green TLC analytical methodology has been developed for IP for quality control and preliminary screening of neuroprotective activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IP:

Indian propolis

TLC:

Thin-layer chromatography

UV–Visible:

Ultraviolet visible

MS:

Mass spectrometry

ESI:

Electrospray ionization

AChE:

Acetylcholinesterase

Aβ:

Amyloid-beta

US FDA:

US Food and Drug Administration

λmax :

Lambda max

R F :

Retardation factor

ICH:

International Council for Harmonisation

NEMI:

National Environmental Methods Index

NFPA:

National Fire Protection Association

GAPI:

Green Analytical Procedure Index

AGREE:

Analytical greenness calculator

NP:

Natural product

ASR:

Anisaldehyde sulphuric acid reagent

DPPH:

2,2-Diphenyl-1-picryl hydrazyl

DTNB:

5,5′-Dithiobis-2-nitrobenzoic acid

ATCI:

Acetylthiocholine iodide

References

  1. Millar H (2021) The importance of bees to humans, the planet, and food supplies. https://www.medicalnewstoday.com/articles/why-are-bees-important-to-humans. Accessed 2 Mar 2024

  2. Srivastava PK (2019) Status report on bee keeping and honey processing 2019–20. Ministry of Micro, Small & Medium Enterprises, Government of India, New Delhi

  3. Cornara L, Biagi M, Xiao J, Burlando B (2017) Therapeutic properties of bioactive compounds from different honeybee products. Front Pharmacol 8:1–20. https://doi.org/10.3389/fphar.2017.00412

    Article  CAS  Google Scholar 

  4. Pasupuleti VR, Sammugam L, Ramesh N, Gan SH (2017) Honey, propolis, and royal jelly: a comprehensive review of their biological actions and health benefits. Oxid Med Cell Longev 2017:1–21. https://doi.org/10.1155/2017/1259510

    Article  CAS  Google Scholar 

  5. Dubey R, Sathiyanarayanan L, Sankaran S, Arulmozhi S (2023) Nootropic effect of Indian Royal Jelly against okadaic acid induced rat model of Alzheimer’s disease: inhibition of neuroinflammation and acetylcholineesterase. J Tradit Complement Med. https://doi.org/10.1016/j.jtcme.2023.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dubey R, Sathiyanarayanan L, Rao L, Sankaran S (2023) Investigation of nutraceutical potential, in vitro antioxidant and free radical scavenging activity of Indian royal jelly. J Res Pharm 27:1289–1300. https://doi.org/10.12991/jrp.2019.00

    Article  CAS  Google Scholar 

  7. Liu C, Hao D, Zhang Q et al (2016) Application of bee venom and its main constituent melittin for cancer treatment. Cancer Chemother Pharmacol 78:1113–1130. https://doi.org/10.1007/s00280-016-3160-1

    Article  CAS  PubMed  Google Scholar 

  8. Denisow B, Denisow-Pietrzyk M (2016) Biological and therapeutic properties of bee pollen: a review. J Sci Food Agric 96:4303–4309. https://doi.org/10.1002/jsfa.7729

    Article  CAS  PubMed  Google Scholar 

  9. Ketkar SS, Rathore AS, Lohidasan S et al (2014) Investigation of the nutraceutical potential of monofloral Indian mustard bee pollen. J Integr Med 12:379–389. https://doi.org/10.1016/S2095-4964(14)60033-9

    Article  PubMed  Google Scholar 

  10. Kasote DM (2017) Propolis: a neglected product of value in the Indian beekeeping sector. Bee World 94:80–83. https://doi.org/10.1080/0005772x.2017.1345223

    Article  Google Scholar 

  11. Kuropatnicki AK, Szliszka E, Krol W (2013) Historical aspects of propolis research in modern times. J Evid Based Complement Altern Med 2013:1–11. https://doi.org/10.1155/2013/964149

    Article  Google Scholar 

  12. Kapare HS, Sathiyanarayanan L (2020) Nutritional and therapeutic potential of propolis: a review. Res J Pharm Technol 13:3545–3549. https://doi.org/10.5958/0974-360X.2020.00627.7

    Article  Google Scholar 

  13. Sforcin JM (2016) Biological properties and therapeutic applications of propolis. Phytother Res 30:894–905. https://doi.org/10.1002/ptr.5605

    Article  PubMed  Google Scholar 

  14. Wagh VD (2013) Propolis: a wonder bees product and its pharmacological potentials. Adv Pharmacol Sci 2013:1–11. https://doi.org/10.1155/2013/308249

    Article  CAS  Google Scholar 

  15. Bankova V, Bertelli D, Borba R et al (2019) Standard methods for Apis mellifera propolis research. J Apic Res 58:1–49. https://doi.org/10.1080/00218839.2016.1222661

    Article  Google Scholar 

  16. Sankaran S, Dubey R, Lohidasan S (2023) Optimization of extraction conditions using response surface methodology and HPTLC fingerprinting analysis of Indian propolis. J Biol Active Prod Nat 13:76–93. https://doi.org/10.1080/22311866.2023.2185681

    Article  CAS  Google Scholar 

  17. Kasote DM, Pawar MV, Bhatia RS et al (2017) HPLC, NMR based chemical profiling and biological characterisation of Indian propolis. Fitoterapia 122:52–60. https://doi.org/10.1016/j.fitote.2017.08.011

    Article  CAS  PubMed  Google Scholar 

  18. Sankaran S, Dubey R, Gomatam A et al (2024) Deciphering the multi-functional role of Indian propolis for the management of Alzheimer’s disease by integrating LC–MS/MS, network pharmacology, molecular docking, and in vitro studies. Mol Divers. https://doi.org/10.1007/s11030-024-10818-8

    Article  PubMed  Google Scholar 

  19. Liu R, Wu C, Zhou D et al (2012) Pinocembrin protects against b-amyloid-induced toxicity in neurons through inhibiting receptor for advanced glycation end products (RAGE)—independent signaling pathways and regulating mitochondrion-mediated apoptosis. BMC Med 10:1–21. https://doi.org/10.1186/1741-7015-10-105

    Article  CAS  Google Scholar 

  20. Elbatreek MH, Mahdi I, Ouchari W et al (2023) Current advances on the therapeutic potential of pinocembrin: an updated review. Biomed Pharmacother 157:1–13. https://doi.org/10.1016/j.biopha.2022.114032

    Article  CAS  Google Scholar 

  21. Katekhaye S, Fearnley H, Fearnley J, Paradkar A (2019) Gaps in propolis research: challenges posed to commercialization and the need for an holistic approach. J Apic Res 58:604–616. https://doi.org/10.1080/00218839.2019.1614273

    Article  Google Scholar 

  22. Guzelmeric E, Ristivojević P, Trifković J et al (2018) Authentication of Turkish propolis through HPTLC fingerprints combined with multivariate analysis and palynological data and their comparative antioxidant activity. LWT 87:23–32. https://doi.org/10.1016/j.lwt.2017.08.060

    Article  CAS  Google Scholar 

  23. Saftić L, Peršurić Ž, Fornal E et al (2019) Targeted and untargeted LC-MS polyphenolic profiling and chemometric analysis of propolis from different regions of Croatia. J Pharm Biomed Anal 165:162–172. https://doi.org/10.1016/j.jpba.2018.11.061

    Article  CAS  PubMed  Google Scholar 

  24. Kasote D, Suleman T, Chen W et al (2014) Chemical profiling and chemometric analysis of South African propolis. Biochem Syst Ecol 55:156–163. https://doi.org/10.1016/j.bse.2014.03.012

    Article  CAS  Google Scholar 

  25. Ghallab DS, Mohyeldin MM, Shawky E et al (2021) Chemical profiling of Egyptian propolis and determination of its xanthine oxidase inhibitory properties using UPLC–MS/MS and chemometrics. LWT 136:110298. https://doi.org/10.1016/j.lwt.2020.110298

    Article  CAS  Google Scholar 

  26. Sadhana N, Lohidasan S, Mahadik KR (2017) Marker-based standardization and investigation of nutraceutical potential of Indian propolis. J Integr Med 15:483–494. https://doi.org/10.1016/S2095-4964(17)60360-1

    Article  PubMed  Google Scholar 

  27. Avula B, Sagi S, Masoodi MH et al (2020) Quantification and characterization of phenolic compounds from northern Indian propolis extracts and dietary supplements. J AOAC Int 103:1378–1393. https://doi.org/10.1093/jaoacint/qsaa032

    Article  PubMed  Google Scholar 

  28. Nanaware S, Shelar M, Sinnathambi A et al (2017) Neuroprotective effect of Indian propolis in β-amyloid induced memory deficit: impact on behavioral and biochemical parameters in rats. Biomed Pharmacother 93:543–553. https://doi.org/10.1016/j.biopha.2017.06.072

    Article  CAS  PubMed  Google Scholar 

  29. Agatonovic-Kustrin S, Morton DW (2020) Hyphenated TLC as a tool in the effect-directed discovery of bioactive natural products. Appl Sci 10:1–5. https://doi.org/10.3390/app10031123

    Article  CAS  Google Scholar 

  30. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (2005) ICH harmonised tripartite guideline validation of analytical procedures: text and methodology Q2(R1), Geneva

  31. Raynie D, Driver J (2009) Green assessment of chemical methods. In: 13th annual green chemistry and engineering conference, June 2‒5, 2024 in Atlanta

  32. Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J (2012) Analytical eco-scale for assessing the greenness of analytical procedures. Trends Anal Chem 37:61–72. https://doi.org/10.1016/j.trac.2012.03.013

    Article  CAS  Google Scholar 

  33. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 181:204–209. https://doi.org/10.1016/j.talanta.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  34. Pena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREE—analytical GREEnness metric approach and software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Medic-šaric M, Jasprica I, Mornar A, Maleš Ž (2008) Application of TLC in the isolation and analysis of flavonoids. In: Waksmundzka-Hajnos M, Sherma J, Kowalska T (eds) Thin layer chromatography in phytochemistry. CRC Press, Boca Raton, pp 405–424

    Google Scholar 

  36. Jovic MD, Agatonovic-Kustrin S, Ristivojevic PM et al (2023) Bioassay-guided assessment of anti-oxidative, anti-inflammatory and antimicrobial activities of extracts from medicinal plants via high-performance thin-layer chromatography. Molecules 28:1–16. https://doi.org/10.3390/molecules28217346

    Article  CAS  Google Scholar 

  37. Kiely JS, Moos WH, Pavia MR et al (1991) A silica gel plate-based qualitative assay for acetylcholinesterase activity: a mass method to screen for potential inhibitors. Anal Biochem 196:439–442. https://doi.org/10.1016/0003-2697(91)90491-B

    Article  CAS  PubMed  Google Scholar 

  38. Dash UC, Sahoo AK (2017) In vitro antioxidant assessment and a rapid HPTLC bioautographic method for the detection of anticholinesterase inhibitory activity of Geophila repens. J Integr Med 15:231–241. https://doi.org/10.1016/S2095-4964(17)60326-1

    Article  PubMed  Google Scholar 

  39. Kapare H, Lohidasan S, Sinnathambi A, Mahadik K (2019) Standardization, anti-carcinogenic potential and biosafety of Indian propolis. J Ayurveda Integr Med 10:81–87. https://doi.org/10.1016/j.jaim.2017.06.003

    Article  PubMed  Google Scholar 

  40. Boisard S, Le Ray AM, Gatto J et al (2014) Chemical composition, antioxidant and anti-AGEs activities of a French poplar type propolis. J Agric Food Chem 62:1344–1351. https://doi.org/10.1021/jf4053397

    Article  CAS  PubMed  Google Scholar 

  41. Aishwarya V, Sumathi T (2015) Chrysin, a natural flavonoid attenuates cognitive dysfunction and neuronal loss associated with amyloid β (25–35)-induced oxidative stress: an experimental model of Alzheimer’s disease. Int J Pharmacogn Phytochem Res 7:224–236

    Google Scholar 

  42. Huang L, Lin M, Zhong X et al (2019) Galangin decreases p-tau, Aβ 42 and β-secretase levels, and suppresses autophagy in okadaic acid-induced PC12 cells via an Akt/GSK3β/mTOR signaling-dependent mechanism. Mol Med Rep 19:1767–1774. https://doi.org/10.3892/mmr.2019.9824

    Article  CAS  PubMed  Google Scholar 

  43. López-lázaro M (2009) Distribution and biological activities of the flavanoid luteolin. Mini-Rev Med Chem 9:31–59. https://doi.org/10.2174/138955709787001712

    Article  PubMed  Google Scholar 

  44. Pei K, Ou J, Huang J, Ou S (2016) p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 96:2952–2962. https://doi.org/10.1002/jsfa.7578

    Article  CAS  PubMed  Google Scholar 

  45. Srivastava M (2011) High-performance thin-layer chromatography (HPTLC). Springer, Berlin, Heidelberg

    Book  Google Scholar 

  46. Imam MS, Abdelrahman MM (2023) How environmentally friendly is the analytical process? A paradigm overview of ten greenness assessment metric approaches for analytical methods. Trends Environ Anal Chem 38:1–10. https://doi.org/10.1016/j.teac.2023.e00202

    Article  CAS  Google Scholar 

  47. Shi M, Zheng X, Zhang N et al (2023) Overview of sixteen green analytical chemistry metrics for evaluation of the greenness of analytical methods. Trends Anal Chem 166:1–18. https://doi.org/10.1016/j.trac.2023.117211

    Article  CAS  Google Scholar 

  48. El-Gizawy SM, Atia NN, Ali MFB, Rushdy DH (2023) Development of a highly sensitive and eco-friendly high-performance thin-layer chromatography approach for the determination of empagliflozin, pioglitazone, and rosuvastatin simultaneously in pharmaceutical preparations and different biological fluids. J Planar Chromatogr-Mod TLC 36:401–414. https://doi.org/10.1007/s00764-023-00264-x

    Article  CAS  Google Scholar 

  49. Ristivojević P, Andrić FL, Trifković JD et al (2014) Pattern recognition methods and multivariate image analysis in HPTLC fingerprinting of propolis extracts. J Chemom 28:301–310. https://doi.org/10.1002/cem.2592

    Article  CAS  Google Scholar 

  50. Necip A, Demirtas I, Tayhan SE et al (2023) Isolation of phenolic compounds from eco-friendly white bee propolis: Antioxidant, wound-healing, and anti-Alzheimer effects. Food Sci Nutr 00:1–12. https://doi.org/10.1002/fsn3.3888

    Article  CAS  Google Scholar 

  51. Zahoor M, Khan I, Zeb A et al (2021) Pharmacological evaluation and in-silico modeling study of compounds isolated from Ziziphus oxyphylla. Heliyon 7:1–7. https://doi.org/10.1016/j.heliyon.2021.e06367

    Article  CAS  Google Scholar 

  52. Guo AJY, Xie HQ, Choi RCY et al (2010) Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro. Chem Biol Interact 187:246–248. https://doi.org/10.1016/j.cbi.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  53. Romero Rocamora C, Ramasamy K, Meng Lim S et al (2020) HPTLC based approach for bioassay-guided evaluation of antidiabetic and neuroprotective effects of eight essential oils of the Lamiaceae family plants. J Pharm Biomed Anal 178:1–7. https://doi.org/10.1016/j.jpba.2019.112909

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the All-India Council for Technical Education (AICTE) for granting Sandeep Sankaran financial support via the AICTE Doctoral Fellowship Scheme (ADF). The authors would like to thank Mr. Amol Kadam, Dr. Sangram Patil, and the Centre of Food Testing Laboratories, Pune for assistance in MS work.

Funding

This research did not receive any specific grant from funding agencies for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathiyanarayanan Lohidasan.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest relevant to the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, S., Dubey, R., Bakore, A. et al. Sustainable instrumental thin-layer chromatography-based methodology for standardization of neuroprotective components in propolis collected from India. JPC-J Planar Chromat 37, 233–245 (2024). https://doi.org/10.1007/s00764-024-00307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-024-00307-x

Keywords

Navigation