Skip to main content
Log in

Simultaneous determination of amlodipine besylate and azilsartan mixture in human plasma utilizing high-performance thin-layer chromatography with ultraviolet detection

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

A novel, efficient, and sensitive high-performance thin-layer chromatography (HPTLC) method has been developed and validated for the concurrent measurement of amlodipine besylate (AML besylate) and azilsartan (AZL) in human plasma spiked with the mixture. Reflectance/absorbance densitometry was conducted using toluene‒ethyl acetate‒methanol‒acetone‒acetic acid (6:1.5:1:0.5:1, V/V) as the mobile phase, and separation was achieved on a precoated silica gel HPTLC plate. This chromatographic system yielded compact bands with excellent resolution at a retardation factor (RF) of 0.22 ± 0.002 for AML besylate and 0.73 ± 0.001 for AZL. Quantification of AML besylate and AZL was performed at 244 nm within the ranges of 60‒600 ng per band and 90‒900 ng per band, respectively. Calibration plots exhibited strong linearity, with correlation coefficients of 0.9976 for AML besylate and 0.9974 for AZL. Following the International Council for Harmonisation (ICH) guidelines, the developed method was validated. The lowest detectable values for AML besylate and AZL were 13.79 ng per band and 18.62 ng per band, respectively. The recommended HPTLC methodology for the simultaneous determination of AML besylate and AZL is demonstrated to be sensitive, selective, accurate, and precise. This technique can effectively be applied to the simultaneous detection and quantification of AML besylate and AZL in synthetic mixtures and human plasma samples. The enhancing effect of ammonia on the absorption intensity and the bathochromic effect on the wavelength of absorbtion were investigated by molecular modeling and it is suggested that ammonia causes acrylamide to change into acrylamic acid with more conjugated double bonds that rationale the increase in the absorption intensity and the bathochromic shift in the wavelength of the absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bulsara KG, Cassagnol M (2023) Amlodipine besylate. StatPearls Publishing, Treasure Island

    Google Scholar 

  2. Ananchenko G, Novakovic J, Lewis J (2012) Amlodipine besylate. Profiles Drug Subst Excip Relat Methodol 37:31–77

    Article  CAS  PubMed  Google Scholar 

  3. Fares H, DiNicolantonio JJ, O’Keefe JH, Lavie CJ (2016) Amlodipine in hypertension: a first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart 3(2):e000473

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferrari R, Pavasini R, Camici PG, Crea F, Danchin N, Pinto F et al (2019) Anti-anginal drugs-beliefs and evidence: systematic review covering 50 years of medical treatment. Eur Heart J 40(2):190–194

    Article  CAS  PubMed  Google Scholar 

  5. Tissier R, Perrot S, Enriquez B (2005) Amlodipine: one of the main anti-hypertensive drugs in veterinary therapeutics. J Vet Cardiol 7(1):53–58

    Article  PubMed  Google Scholar 

  6. Zaiken K, Cheng JW (2011) Azilsartan medoxomil: a new angiotensin receptor blocker. Clin Ther 33(11):1577–1589

    Article  CAS  PubMed  Google Scholar 

  7. Jones JD, Jackson SH, Agboton C, Martin TS (2011) Azilsartan medoxomil (Edarbi): the eighth angiotensin II receptor blocker. Pharmacol Therapeut 36(10):634–636

    Google Scholar 

  8. Surwade K, Saudagar R (2015) UV spectrophotometric method for the estimation of azilsartan medoxomil in bulk and pharmaceutical formulations. World J Pharm Res 4(1):1667–1672

    CAS  Google Scholar 

  9. Perry CM (2012) Azilsartan medoxomil: a review of its use in hypertension. Clin Drug Invest 32:621–639

    Article  CAS  Google Scholar 

  10. Angeloni E (2016) Azilsartan medoxomil in the management of hypertension: an evidence-based review of its place in therapy. Core Evid 11:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hassan SA, Elzanfaly ES, Salem MY, El-Zeany BA (2016) Development and validation of HPLC and CE methods for simultaneous determination of amlodipine and atorvastatin in the presence of their acidic degradation products in tablets. Acta Pharmaceut 66(4):479–490

    Article  CAS  Google Scholar 

  12. Mhaske R, Garole D, Mhaske A, Sahasrabudhe S (2012) RP-HPLC method for simultataneous determination of amlodipine besylate, valsartan, telmisartan, hydrochlorothiazide and chlorthalidone: application to commercially available drug products. Int J Pharm Sci Res 3(1):141–149

    CAS  Google Scholar 

  13. Marolia BP, Bodiwala KB, Shah SA, Prajapati PB, Satani BH, Desai SA (2016) Development and validation of HPTLC method for simultaneous estimation of amlodipine besylate, hydrochlorothiazide and telmisartan in their combined tablet dosage form. Pharm Methods 7(1):48–53

    Article  CAS  Google Scholar 

  14. Solanki TB, Shah PA, Patel KG (2014) Central composite design for validation of HPTLC method for simultaneous estimation of olmesartan medoxomil, amlodipine besylate and hydrochlorothiazide in tablets. Indian J Pharm Sci 76(3):179–187

    PubMed  PubMed Central  Google Scholar 

  15. Naveed S, Qamar H, Jawaid W, Bokhari U (2014) Simple UV spectrophotometric assay of amlodipine. Am J Chem Appl 1(4):66–69

    Google Scholar 

  16. Malesuik MD, Cardoso SG, Bajerski L, Lanzanova FA (2006) Determination of amlodipine in pharmaceutical dosage forms by liquid chromatography and ultraviolet spectrophotometry. J AOAC Int 89(2):359–364

    Article  CAS  PubMed  Google Scholar 

  17. Shaalan RA, Belal TS (2010) Simultaneous spectrofluorimetric determination of amlodipine besylate and valsartan in their combined tablets. Drug Test Anal 2(10):489–493

    Article  CAS  PubMed  Google Scholar 

  18. Mohamed A-MI, Omar MA, Hammad MA, Mohamed AA (2016) Development and validation of highly sensitive stability indicating spectrofluorimetric method for determination of amlodipine in pharmaceutical preparations and human plasma. J Fluoresc 26:2141–2149

    Article  CAS  PubMed  Google Scholar 

  19. Goyal RN, Bishnoi S (2010) Voltammetric determination of amlodipine besylate in human urine and pharmaceuticals. Bioelectrochemistry 79(2):234–240

    Article  CAS  PubMed  Google Scholar 

  20. Stoiljković ZŽ, Ivić MA, Petrović SD, Mijin D, Stevanović SI, Lačnjevac U et al (2012) Voltammetric and square-wave anodic stripping determination of amlodipine besylate on gold electrode. Int J Electrochem Sci 7(3):2288–2303

    Article  Google Scholar 

  21. Khairy M, Khorshed AA (2020) Simultaneous voltammetric determination of two binary mixtures containing propranolol in pharmaceutical tablets and urine samples. Microchem J 159:105484

    Article  CAS  Google Scholar 

  22. Khorshed AA, Khairy M, Banks CE (2019) Electrochemical determination of antihypertensive drugs by employing costless and portable unmodified screen-printed electrodes. Talanta 198:447–456

    Article  CAS  PubMed  Google Scholar 

  23. Khairy M, Khorshed AA, Rashwan FA, Salah GA, Abdel-Wadood HM, Banks CE (2017) Simultaneous voltammetric determination of antihypertensive drugs nifedipine and atenolol utilizing MgO nanoplatelet modified screen-printed electrodes in pharmaceuticals and human fluids. Sens Actuators B 252:1045–1054

    Article  CAS  Google Scholar 

  24. Khairy M, Khorshed AA, Rashwan FA, Salah GA, Abdel-Wadood HM, Banks CE (2017) Sensitive determination of amlodipine besylate using bare/unmodified and DNA-modified screen-printed electrodes in tablets and biological fluids. Sens Actuators B 239:768–775

    Article  CAS  Google Scholar 

  25. Gawai M, Surwade K, Phadatare D (2018) UV spectrophotometric method for the estimation of azilsartan medoxomil in bulk form. Asian J Res Chem 11(5):791–793

    Article  Google Scholar 

  26. Ebeid WM, Elkady EF, El-Zaher AA, El-Bagary RI, Patonay G (2014) Spectrophotometric and spectrofluorimetric studies on azilsartan medoxomil and chlorthalidone to be utilized in their determination in pharmaceuticals. Anal Chem Insights 9:33–40

    Article  PubMed  PubMed Central  Google Scholar 

  27. Darwish HW, Bakheit AH, Abdelhameed AS, Mustafa B (2016) A novel method to determine new potent angiotensin inhibitor, azilsartan, in human plasma via micelle-enhanced spectrofluorimetry using cremophor RH 40. Trop J Pharm Res 15(5):1003–1012

    Article  CAS  Google Scholar 

  28. Masthanamma S, Pradeepthi J (2014) Stability indicating RP-HPLC method for determination of azilsartan medoxomil in pharmaceutical dosage form. Res J Pharm Technol 7(2):168–172

    Google Scholar 

  29. Solanki DP, Panday VR, Shah DA, Chhalotiya U, Tandel JN, Kacchiya HM (2023) Liquid chromatographic method for simultaneous estimation of anti-hypertensive drug combination azilsartan medoxomil and cilnidipine. Sep Sci Plus 6(4):2200151

    Article  CAS  Google Scholar 

  30. Gandhi S, Mittal P, Pahade A, Rege S (2015) Development and validation of stability indicating hptlc method for estimation of azilsartan medoximil. Int J Pharm Sci 6(1):224–232

    CAS  Google Scholar 

  31. Vyas R, Dediya P, Shah S, Shah D (2019) Development and validation of HPTLC mehtod for estimation of azilsartan medoxomil. Pharm Sci Monit 10(1):108–117

    CAS  Google Scholar 

  32. Shihab SA, Mashkour MS (2023) Square-wave voltammetric determination of ant-hypertension (azilsartn medoxomil) and real samples of biological applications. Egypt Acad J Biol Sci D 15(2):59–71

    Google Scholar 

  33. Pawar S, Gosavi S, Gorde P, Harak S, Shendge R, Dumbare M (2021) Geometrical correction method for simultaneous estimation of azilsartan medoxomil and amlodipine besylate from biological sample. Nat Volat Essent Oils 8:16787–16796

    Google Scholar 

  34. Oraby M, Khorshed A, Abdul-Rahman E, Ali R, Elsutohy MM (2019) A clinical study for the evaluation of pharmacokinetic interaction between daclatasvir and fluoxetine. J Pharm Biomed Anal 171:104–110

    Article  CAS  PubMed  Google Scholar 

  35. Ibrahim AH, Oraby M, Khorshed AA (2022) HPTLC determination of ergosterol in wheat and structure elucidation by NMR: toward confirming method selectivity. J Food Comp Anal 114:104763

    Article  CAS  Google Scholar 

  36. Khorshed AA, Elsutohy MM, Mohamed AA, Oraby M (2022) HPTLC method for the ultrasensitive detection of triamterene in plasma. J Chromatogr Sci 60(3):267–273

    Article  CAS  PubMed  Google Scholar 

  37. Salah GA, Abd El-Wadood HM, Khairy M, Khorshed AA (2017) Two selective HPTLC methods for determination of some angiotensin II receptor antagonists in tablets and biological fluids. Biomed Chromatogr 31(7):e3916

    Article  Google Scholar 

  38. Hussein SAE-R, El-Wadood HMA, Abdallah MA-EW, Khorshed AAE-H (2015) HPTLC with fluorescence densitometry for simultaneous determination of some angiotensin II receptor blockers in tablets and plasma. J AOAC Int 98(2):354–360

    Article  PubMed  Google Scholar 

  39. Hussein SAE-R, Abd El-Wadood HM, Abdallah MA-E, Khorshed AAE-H (2015) Development of two high-performance thin-layer chromatographic methods for the determination of irbesartan in tablets and plasma. JPC J Planar Chromatogr Mod TLC 28:83–89

    Article  Google Scholar 

  40. Hussein S, Abd El-Wadood H, Abou-Elwafa Abdallah M, Khorshed A (2014) Application of high-performance thin-layer chromatography for screening and simultaneous determination of some angiotensin II receptor antagonists in dosage forms and plasma. JPC J Planar Chromatogr Mod TLC 27(3):192–198

    Article  CAS  Google Scholar 

  41. Khorshed AA, Abdelnaeem FM, Derayea SM, Nagy DM, Oraby M (2022) Ultrasensitive TLC determination of montlukast and loratadine mixture in human plasma utilizing fluorescence detection at dual pH values: toward attaining separate maximum fluorescence intensity. J Chromatogr B 1193:123161

    Article  CAS  Google Scholar 

  42. Rote AR, Niphade VS (2011) Determination of montelukast sodium and levocetirizine dihydrochloride in combined tablet dosage form by HPTLC and first-derivative spectrophotometry. J Liq Chromatogr Relat Technol 34(3):155–167

    Article  CAS  Google Scholar 

  43. Khorshed AA, Abdelnaeem FM, Derayea SM, Oraby M, Nagy DM (2022) Concurrent estimation of montelukast and loratadine mixture in spiked human plasma utilizing high-performance thin-layer chromatography with ultraviolet detection. JPC J Planar Chromatogr Mod TLC 35(6):617–625

    Article  CAS  Google Scholar 

  44. Rakugi H, Nakata E, Sasaki E, Kagawa T (2014) Evaluation of the efficacy and tolerability of fixed-dose combination therapy of azilsartan and amlodipine besylate in Japanese patients with grade I to II essential hypertension. Clin Ther 36(5):711–721

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed A. Khorshed.

Ethics declarations

Conflict of interest

The authors declare that they do not have a conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorshed, A.A., Abdelnaeem, F.M., Derayea, S.M. et al. Simultaneous determination of amlodipine besylate and azilsartan mixture in human plasma utilizing high-performance thin-layer chromatography with ultraviolet detection. JPC-J Planar Chromat (2024). https://doi.org/10.1007/s00764-024-00300-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00764-024-00300-4

Keywords

Navigation