Skip to main content
Log in

Anwendung künstlicher Intelligenz in der Radioonkologie

Zielvolumendefinition und Organsegmentierung

Artificial intelligence in radiation oncology

Target volume definition and organ segmentation

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

Die Bestrahlungsplanung ist ein notwendiger Arbeitsschritt vor Durchführung einer Strahlentherapie. Die Definition von anatomischen Organen, die in direkter Nähe zu der bestrahlten Zielregion liegen, und die Definition des Zielvolumens ist dabei ein zentraler Bestandteil der ärztlichen Tätigkeit einer Strahlentherapeut*In. Die Errungenschaften in der Entwicklung der künstlichen Intelligenz (KI) haben neuronale Netze hervorgebracht, die hocheffektiv zur Segmentierung von medizinischen Bilddaten verwendet werden können.

Ziel der Arbeit

Ziel war die Analyse der Möglichkeiten der KI-basierten Autokonturierung in der Bestrahlungsplanung. Dabei erfolgt die Vorstellung von wissenschaftlichen Arbeiten, die Diskussion klinisch verfügbarer Software und ein Ausblick auf zukünftige innovative Lösungen.

Material und Methoden

Eine Literatursuche (PubMed) wurde durchgeführt, um relevante Literatur zu identifizieren.

Ergebnisse

Erste zugelassene Softwarelösungen ermöglichen die automatisierte Konturierung von anatomischen Organen. Die Segmentierungsgüte erreicht für viele Organe eine hohe Qualität, während bestimmte kleine oder besonders lagevariable Strukturen noch größerer manueller Korrekturen bedürfen. Die Definition von klinischen Zielvolumina, z. B. im Sinne von lokalen Lymphabflusswegen, scheint eine gute Reproduzierbarkeit aufzuweisen. Für verschiedene Tumoren wurde außerdem gezeigt, dass neuronale Netze ebenfalls effektiv und reproduzierbar die Tumorregion definieren können. Weitere Entwicklungen, wie Tumorwachstumsmodelle, könnten außerdem neue individualisierte Definitionswege von Zielvolumina ermöglichen.

Schlussfolgerung

KI-Modelle zur Autokonturierung haben das Potenzial, die Arbeit von Radioonkolog*Innen durch eine Teilautomatisierung zu beschleunigen, den Personalaufwand zu reduzieren und gleichzeitig eine erhöhte Standardisierung zu erreichen.

Abstract

Background

Target volume definition is a central component of radiation planning in radiation oncology. In addition to anatomical organs that are in close proximity to the irradiated target region, target volume definition is a relevant part of a radiation oncologist’s medical practice. Advances in the development of artificial intelligence (AI) have produced neural networks that can be used highly effectively to segment medical image data.

Aim

To analyze the potential of AI-based autocontouring in radiation planning. The article presents the body of scientific work, existing software solutions and an outlook on future innovative solutions.

Materials and methods

A literature search (PubMed) was performed to identify relevant literature.

Results

The first approved software solutions allow automated contouring of anatomical organs. The segmentation quality for many organs is high, while certain positionally variable structures or particularly small organs still require more substantial corrections. The definition of clinical target volumes, e.g., in terms of local lymphatic drainage, achieve good reproducibility. For a variety of tumors, it has also been shown that neural networks can effectively and reproducibly define the gross tumor volume. Further developments, such as tumor growth models, may provide novel individualized definitions of target volumes.

Conclusion

AI models for autocontouring have the potential to accelerate the work of radiation oncologists through partial automation and reducing staff time, while achieving increased standardization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Wannenmacher M, Debus J, Wenz F (Hrsg) (2006) Strahlentherapie. Springer, Berlin, Heidelberg

    Google Scholar 

  2. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444

    Article  CAS  PubMed  Google Scholar 

  3. Truhn D, Schrading S, Haarburger C, Schneider H, Merhof D, Kuhl C (2019) Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Radiology 290:290–297

    Article  PubMed  Google Scholar 

  4. Peeken JC, Wiestler B, Combs SE (2020) Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application. In Debus J, Schober O, Kiessling F (eds) Image Guided Radiooncology. Springer Berlin Heidelberg, p. 773–94.

  5. Ronneberger O, Philipp F, U‑Net BT (2015) Convolutional Networks for Biomedical Image Segmentation. MICCAI 9351:234–241

    Google Scholar 

  6. Milletari F, Navab N, Ahmadi S‑A. V‑Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV). IEEE; 2016.

  7. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18:203–211

    Article  CAS  PubMed  Google Scholar 

  8. Navarro F, Shit S, Ezhov I et al (2019) Shape-Aware Complementary-Task Learning for Multi-organ Segmentation. In: MLMI Workshop 2019 MICCAI, S 620–627

    Google Scholar 

  9. Navarro F, Sasahara G, Shit S, et al. A Unified 3D Framework for Organs-at-Risk Localization and Segmentation for Radiation Therapy Planning. In: 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE; 2022.

  10. Zabel WJ, Conway JL, Gladwish A et al (2021) Clinical Evaluation of Deep Learning and Atlas-Based Auto-Contouring of Bladder and Rectum for Prostate Radiation Therapy. Pract Radiat Oncol 11:e80–9

    Article  PubMed  Google Scholar 

  11. Strolin S, Santoro M, Paolani G et al (2023) How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images. Front Oncol 13:1–13

    Article  Google Scholar 

  12. Thor M, Apte A, Haq R, Iyer A, LoCastro E, Deasy JO (2021) Using Auto-Segmentation to Reduce Contouring and Dose Inconsistency in Clinical Trials: The Simulated Impact on RTOG 0617. Int J Radiat Oncol Biol Phys 109:1619–1626

    Article  PubMed  Google Scholar 

  13. Buchner JA, Kofler F, Etzel L et al (2023) Development and external validation of an MRI-based neural network for brain metastasis segmentation in the AURORA multicenter study. Radiother Oncol 178:109425

    Article  CAS  PubMed  Google Scholar 

  14. Primakov SP, Ibrahim A, van Timmeren JE et al (2022) Automated detection and segmentation of non-small cell lung cancer computed tomography images. Nat Commun 13:3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song Y, Hu J, Wu Q et al (2020) Automatic delineation of the clinical target volume and organs at risk by deep learning for rectal cancer postoperative radiotherapy. Radiother Oncol 145:186–192

    Article  PubMed  Google Scholar 

  16. Wong J, Fong A, McVicar N et al (2020) Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning. Radiother Oncol 144:152–158

    Article  PubMed  Google Scholar 

  17. Schreier J, Genghi A, Laaksonen H, Morgas T, Haas B (2020) Clinical evaluation of a full-image deep segmentation algorithm for the male pelvis on cone-beam CT and CT. Radiother Oncol 145:1–6

    Article  PubMed  Google Scholar 

  18. Kucharczyk M, Chytyk-Praznik K, Giambattista J et al (2022) 18: A Randomized Blinded Assessment of a Machine Learning Based Autocontouring Tool for Breast Cancer Radiotherapy Compared to Peer-Reviewed Radiation Oncologist Contours. Radiother Oncol 174:S11

    Article  Google Scholar 

  19. Shusharina N, Söderberg J, Edmunds D, Löfman F, Shih H, Bortfeld T (2020) Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. Radiother Oncol 146:37–43

    Article  PubMed  Google Scholar 

  20. Peeken JC, Shouman MA, Kroenke M et al (2020) A CT-based radiomics model to detect prostate cancer lymph node metastases in PSMA radioguided surgery patients. Eur J Nucl Med Mol Imaging 47:2968–2977

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rathore S, Akbari H, Doshi J (2018) Radiomic signature of infiltration in peritumoral edema predicts subsequent recurrence in glioblastoma: implications for personalized radiotherapy planning. J Med Imaging 5:1

    Article  Google Scholar 

  22. Peeken JC, Molina-Romero M, Diehl C et al (2019) Deep learning derived tumor infiltration maps for personalized target definition in Glioblastoma radiotherapy. Radiother Oncol 138:166–172

    Article  PubMed  Google Scholar 

  23. Lipkova J, Angelikopoulos P, Wu S et al (2019) Personalized Radiotherapy Design for Glioblastoma: Integrating Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference. IEEE Trans Med Imaging 38:1875–1884

    Article  PubMed  PubMed Central  Google Scholar 

  24. Metz M‑C, Ezhov I, Zimmer L et al (2023) Towards Image-Based Personalization of Glioblastoma Therapy A Clinical and Biological Validation Study of a Novel, Deep Learning-Driven Tumor Growth Model, S 1–19

    Google Scholar 

  25. Spohn SKB, Schmidt-Hegemann N‑S, Ruf J et al (2023) Development of PSMA-PET-guided CT-based radiomic signature to predict biochemical recurrence after salvage radiotherapy. Eur J Nucl Med Mol Imaging. https://doi.org/10.1007/s00259-023-06195-3

  26. Spohn SKB, Farolfi A, Schandeler S et al (2022) The maximum standardized uptake value in patients with recurrent or persistent prostate cancer after radical prostatectomy and PSMA-PET-guided salvage radiotherapy—a multicenter retrospective analysis. Eur J Nucl Med Mol Imaging 50:218–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peeken JC, Asadpour R, Specht K et al (2021) MRI-based delta-radiomics predicts pathologic complete response in high-grade soft-tissue sarcoma patients treated with neoadjuvant therapy. Radiother Oncol 164:73–82

    Article  PubMed  Google Scholar 

  28. Peeken JC, Neumann J, Asadpour R et al (2021) Prognostic Assessment in High-Grade Soft-Tissue Sarcoma Patients: A Comparison of Semantic Image Analysis and Radiomics. Cancers (Basel) 13:1929

    Article  CAS  PubMed  Google Scholar 

  29. Lang DM, Peeken JC, Combs SE, Wilkens JJ, Bartzsch S (2021) Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients. Cancers (Basel) 13:786

    Article  PubMed  Google Scholar 

  30. Navarro F, Dapper H, Asadpour R et al (2021) Development and External Validation of Deep-Learning-Based Tumor Grading Models in Soft-Tissue Sarcoma Patients Using MR Imaging. Cancers (basel) 13:2866

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Peeken MHBA.

Ethics declarations

Interessenkonflikt

J. Peeken und S. Combs geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peeken, J.C., Combs, S.E. Anwendung künstlicher Intelligenz in der Radioonkologie. Onkologie 29, 876–882 (2023). https://doi.org/10.1007/s00761-023-01351-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-023-01351-8

Schlüsselwörter

Keywords

Navigation