Skip to main content

Bildgebende Diagnostik und der Einsatz von künstlicher Intelligenz beim Management von Organmetastasen

Diagnostic imaging and the use of artificial intelligence in the management of organ metastasis

Zusammenfassung

Die diagnostische Bildgebung spielt eine Schlüsselrolle bei der Erkennung des Primärtumors und möglicher Metastasen. Nach den aktuellen Leitlinien wird zu diesem Zweck die kontrastverstärkte Computertomographie (CT) eingesetzt sowie die Magnetresonanztomographie (MRT) als ergänzende Methode zur Beurteilung von Strukturen wie z. B. des Gehirns. Insbesondere die Differenzierung von Differenzialdiagnosen ist eine tägliche Herausforderung für die Radiologie. Der Einsatz von künstlicher Intelligenz (KI) zur Optimierung von Arbeitsabläufen, zur Unterstützung der Bildbefundung und zur Beurteilung des Therapieergebnisses im Hinblick auf die therapeutische Relevanz ist dringend erforderlich. Radiomics bezeichnet die computergestützte Extraktion und Analyse einer großen Anzahl von Merkmalen aus radiologischen Bildern mithilfe von KI. Zahlreiche Studien haben gezeigt, dass Radiomics die Entdeckung von bildgebenden Biomarkern für die Vorhersage von Behandlungsergebnissen bei Krebspatienten erleichtert. In diesem Zusammenhang ist eine interdisziplinäre Zusammenarbeit unerlässlich.

Abstract

Diagnostic imaging plays a significant role in detecting primary tumours and potential metastases. According to the current guidelines, contrast-enhanced computed tomography (CE-CT) is used for this purpose, with magnetic resonance imaging (MRI) as a complementary method for assessing anatomical structures like the brain. However, differential diagnosis is a daily challenge for radiologists. The use of artificial intelligence (AI) to optimise workflows, support image reporting and assess therapy outcomes in terms of therapeutic relevance is imperative. Radiomics refers to the computer-assisted extraction and analysis of a large number of quantitative features from radiological images using AI. Numerous studies have shown that radiomics facilitates the discovery of imaging biomarkers for outcome prediction in cancer patients. Interdisciplinary collaboration is essential in this context.

This is a preview of subscription content, access via your institution.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006. https://doi.org/10.1038/ncomms5006

    Article  CAS  PubMed  Google Scholar 

  2. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV (2014) Oncologic applications of dual-energy CT in the abdomen. Radiographics 34(3):589–612. https://doi.org/10.1148/rg.343135041

    Article  PubMed  Google Scholar 

  3. Andrearczyk V, Fontaine P, Oreiller V, Castelli J, Jreige M, Prior JO, Depeursinge A (2021) Multi-task deep segmentation and radiomics for automatic prognosis in head and neck cancer. In: International workshop on PRedictive intelligence in MEdicine. Springer, Cham, S 147–156

    Chapter  Google Scholar 

  4. Andrearczyk V, Oreiller V, Jreige M, Castelli J, Prior JO, Depeursinge A (2022) Segmentation and classification of head and neck nodal metastases and primary tumors in PET/CT. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, S 4731–4735 https://doi.org/10.1109/EMBC48229.2022.9871907

    Book  Google Scholar 

  5. Avanzo M, Wei L, Stancanello J, Vallières M, Rao A, Morin O, Mattonen SA, El Naqa I (2020) Machine and deep learning methods for radiomics. Med Phys 47(5):e185–e202. https://doi.org/10.1002/mp.13678

    Article  PubMed  Google Scholar 

  6. Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Netw 5(4):537–550. https://doi.org/10.1109/72.298224

    Article  CAS  PubMed  Google Scholar 

  7. Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, Lambin P, Haibe-Kains B, Mak RH, Aerts HJ (2015) CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol 114(3):345–350. https://doi.org/10.1016/j.radonc.2015.02.015

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delgado A, Guddati AK (2021) Clinical endpoints in oncology—a primer. Am J Cancer Res 11(4):1121–1131

    PubMed  PubMed Central  Google Scholar 

  9. Dewey BE, Zhao C, Reinhold JC, Carass A, Fitzgerald KC, Sotirchos ES, Saidha S, Oh J, Pham DL, Calabresi PA, van Zijl PCM, Prince JL (2019) DeepHarmony: a deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging 64:160–170. https://doi.org/10.1016/j.mri.2019.05.041

    Article  PubMed  PubMed Central  Google Scholar 

  10. Diehn M, Nardini C, Wang DS, McGovern S, Jayaraman M, Liang Y, Aldape K, Cha S, Kuo MD (2008) Identification of noninvasive imaging surrogates for brain tumor gene-expression modules. Proc Natl Acad Sci U S A 105(13):5213–5218. https://doi.org/10.1073/pnas.0801279105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dou TH, Coroller TP, van Griethuysen JJM, Mak RH, Aerts HJWL (2018) Peritumoral radiomics features predict distant metastasis in locally advanced NSCLC. PLoS ONE 13(11):e206108. https://doi.org/10.1371/journal.pone.0206108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fontaine P, Andrearczyk V, Oreiller V, Castelli J, Jreige M, Prior JO, Depeursinge A (2021) Fully automatic head and neck cancer prognosis prediction in PET/CT. In: International workshop on multimodal learning for clinical decision support. Springer, Cham, S 59–68

    Chapter  Google Scholar 

  13. Fortin JP, Cullen N, Sheline YI, Taylor WD, Aselcioglu I, Cook PA, Adams P, Cooper C, Fava M, McGrath PJ, McInnis M, Phillips ML, Trivedi MH, Weissman MM, Shinohara RT (2018) Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167:104–120. https://doi.org/10.1016/j.neuroimage.2017.11.024

    Article  PubMed  Google Scholar 

  14. Fukutomi M, Yokota M, Chuman H, Harada H, Zaitsu Y, Funakoshi A, Wakasugi H, Iguchi H (2001) Increased incidence of bone metastases in hepatocellular carcinoma. Eur J Gastroenterol Hepatol 13(9):1083–1088. https://doi.org/10.1097/00042737-200109000-00015

    Article  CAS  PubMed  Google Scholar 

  15. Granata V, Fusco R, de Lutio di Castelguidone E, Avallone A, Palaia R, Delrio P, Tatangelo F, Botti G, Grassi R, Izzo F, Petrillo A (2019) Diagnostic performance of gadoxetic acid-enhanced liver MRI versus multidetector CT in the assessment of colorectal liver metastases compared to hepatic resection. BMC Gastroenterol 19(1):129. https://doi.org/10.1186/s12876-019-1036-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Habermehl D, Haase K, Rieken S, Debus J, Combs SE (2011) Defining the role of palliative radiotherapy in bone metastasis from primary liver cancer: an analysis of survival and treatment efficacy. Tumori 97(5):609–613. https://doi.org/10.1177/030089161109700512

    Article  PubMed  Google Scholar 

  17. Hagiwara A, Fujita S, Ohno Y, Aoki S (2020) Variability and standardization of quantitative imaging: monoparametric to multiparametric quantification, radiomics, and artificial intelligence. Invest Radiol 55(9):601–616. https://doi.org/10.1097/RLI.0000000000000666

    Article  PubMed  PubMed Central  Google Scholar 

  18. Heuvelmans MA, Ooijen PMA van, Ather S, Silva CF, Han D, Heussel CP, Hickes W, Kauczor HU, Novotny P, Peschl H, Rook M, Rubtsov R, Stackelberg O von, Tsakok MT, Arteta C, Declerck J, Kadir T, Pickup L, Gleeson F, Oudkerk M (2021) Lung cancer prediction by Deep Learning to identify benign lung nodules. Lung cancer (Amsterdam, Netherlands) 154:1–4. https://doi.org/10.1016/j.lungcan.2021.01.027

    Article  PubMed  Google Scholar 

  19. Homma Y, Endo I, Matsuyama R, Sho M, Mizuno S, Seyama Y, Hirano S, Aono T, Kitami C, Morita Y, Takeda Y, Yoshida K, Tani M, Kaiho T, Yamamoto Y, Aoki H, Ogawa M, Niguma T, Mataki Y, Kawasaki H, Yamamoto M (2022) Outcomes of lung metastasis from pancreatic cancer: A nationwide multicenter analysis. J Hepato Biliary Pancreat 29(5):552–561. https://doi.org/10.1002/jhbp.1127

    Article  Google Scholar 

  20. Hosny A, Parmar C, Coroller TP, Grossmann P, Zeleznik R, Kumar A, Bussink J, Gillies RJ, Mak RH, Aerts HJWL (2018) Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study. PLoS Med 15(11):e1002711. https://doi.org/10.1371/journal.pmed.1002711

    Article  PubMed  PubMed Central  Google Scholar 

  21. Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH (2021) nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods 18(2):203–211. https://doi.org/10.1038/s41592-020-01008-z

    Article  CAS  PubMed  Google Scholar 

  22. Katyal S, Oliver JH 3rd, Peterson MS, Ferris JV, Carr BS, Baron RL (2000) Extrahepatic metastases of hepatocellular carcinoma. Radiology 216(3):698–703. https://doi.org/10.1148/radiology.216.3.r00se24698

    Article  CAS  PubMed  Google Scholar 

  23. Keenan KE, Gimbutas Z, Dienstfrey A, Stupic KF (2019) Assessing effects of scanner upgrades for clinical studies. J Magn Reson Imaging 50(6):1948–1954. https://doi.org/10.1002/jmri.26785

    Article  PubMed  Google Scholar 

  24. Kumar V, Gu Y, Basu S, Berglund A, Eschrich SA, Schabath MB, Forster K, Aerts HJ, Dekker A, Fenstermacher D, Goldgof DB, Hall LO, Lambin P, Balagurunathan Y, Gatenby RA, Gillies RJ (2012) Radiomics: the process and the challenges. Magn Reson Imaging 30(9):1234–1248. https://doi.org/10.1016/j.mri.2012.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kurihara Y, Matsuoka S, Yamashiro T, Fujikawa A, Matsushita S, Yagihashi K, Nakajima Y (2014) MRI of pulmonary nodules. Am J Roentgenol 202(3):W210–W216. https://doi.org/10.2214/AJR.13.11618

    Article  Google Scholar 

  26. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van Stiphout RG, Granton P, Zegers CM, Gillies R, Boellard R, Dekker A, Aerts HJ (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48(4):441–446. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  27. Leger S, Zwanenburg A, Pilz K, Lohaus F, Linge A, Zöphel K, Kotzerke J, Schreiber A, Tinhofer I, Budach V, Sak A, Stuschke M, Balermpas P, Rödel C, Ganswindt U, Belka C, Pigorsch S, Combs SE, Mönnich D, Zips D, Richter C (2017) A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Sci Rep 7(1):13206. https://doi.org/10.1038/s41598-017-13448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li WJ, Chu ZG, Zhang Y, Li Q, Zheng YN, Lv FJ (2019) Effect of slab thickness on the detection of pulmonary nodules by use of CT maximum and minimum intensity projection. Am J Roentgenol 213(3):562–567. https://doi.org/10.2214/AJR.19.21325

    Article  Google Scholar 

  29. Li X, Chen H, Qi X, Dou Q, Fu CW, Heng PA (2018) H‑denseUNet: hybrid densely connected unet for liver and tumor segmentation from CT volumes. IEEE Trans Med Imaging 37(12):2663–2674. https://doi.org/10.1109/TMI.2018.2845918

    Article  PubMed  Google Scholar 

  30. Lincke T, Zech CJ (2017) Liver metastases: detection and staging. Eur J Radiol 97:76–82. https://doi.org/10.1016/j.ejrad.2017.10.016

    Article  PubMed  Google Scholar 

  31. Liu JA, Yang IY, Tsai EB (2022) Artificial intelligence (AI) for lung nodules, from the AJR special series on AI applications. AJR Am J Roentgenol 219(5):703–712. https://doi.org/10.2214/AJR.22.27487

    Article  PubMed  Google Scholar 

  32. Maclaren J, Han Z, Vos SB, Fischbein N, Bammer R (2014) Reliability of brain volume measurements: a test-retest dataset. Sci Data 1:140037. https://doi.org/10.1038/sdata.2014.37

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meng M, Gu B, Bi L, Song S, Feng DD, Kim J (2022) DeepMTS: deep multi-task learning for survival prediction in patients with advanced nasopharyngeal carcinoma using pretreatment PET/CT. IEEE J Biomed Health Inform 26(9):4497–4507. https://doi.org/10.1109/JBHI.2022.3181791

    Article  PubMed  Google Scholar 

  34. Morone M, Bali MA, Tunariu N, Messiou C, Blackledge M, Grazioli L, Koh DM (2017) Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 209(6):W336–W349. https://doi.org/10.2214/AJR.17.17984

    Article  PubMed  Google Scholar 

  35. Neri E, Bali MA, Ba-Ssalamah A, Boraschi P, Brancatelli G, Alves FC, Grazioli L, Helmberger T, Lee JM, Manfredi R, Martì-Bonmatì L, Matos C, Merkle EM, Op De Beeck B, Schima W, Skehan S, Vilgrain V, Zech C, Bartolozzi C (2016) ESGAR consensus statement on liver MR imaging and clinical use of liver-specific contrast agents. Eur Radiol 26(4):921–931. https://doi.org/10.1007/s00330-015-3900-3

    Article  CAS  PubMed  Google Scholar 

  36. Nyúl LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE Trans Med Imaging 19(2):143–150. https://doi.org/10.1109/42.836373

    Article  PubMed  Google Scholar 

  37. Pahwa S, Liu H, Chen Y, Dastmalchian S, O’Connor G, Lu Z, Badve C, Yu A, Wright K, Chalian H, Rao S, Fu C, Vallines I, Griswold M, Seiberlich N, Zeng M, Gulani V (2018) Quantitative perfusion imaging of neoplastic liver lesions: a multi-institution study. Sci Rep 8(1):4990. https://doi.org/10.1038/s41598-018-20726-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Parmar C, Grossmann P, Bussink J, Lambin P, Aerts HJWL (2015) Machine learning methods for quantitative radiomic biomarkers. Sci Rep 5:13087. https://doi.org/10.1038/srep13087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parmar C, Grossmann P, Rietveld D, Rietbergen MM, Lambin P, Aerts HJ (2015) Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer. Front Oncol 5:272. https://doi.org/10.3389/fonc.2015.00272

    Article  PubMed  PubMed Central  Google Scholar 

  40. Peng H, Long F, Ding C (2005) Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27(8):1226–1238. https://doi.org/10.1109/TPAMI.2005.159

    Article  PubMed  Google Scholar 

  41. Riihimäki M, Hemminki A, Sundquist K, Sundquist J, Hemminki K (2016) Metastatic spread in patients with gastric cancer. Oncotarget 7(32):52307–52316. https://doi.org/10.18632/oncotarget.10740

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ronneberger O, Fischer P, Brox T (2015) U‑net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham, S 234–241

    Google Scholar 

  43. Scholten ET, Horeweg N, Koning HJ de, Vliegenthart R, Oudkerk M, Mali WP, Jong PA de (2015) Computed tomographic characteristics of interval and post screen carcinomas in lung cancer screening. European radiology 25(1):81–88. https://doi.org/10.1007/s00330-014-3394-4

    Article  PubMed  Google Scholar 

  44. Segal E, Sirlin CB, Ooi C, Adler AS, Gollub J, Chen X, Chan BK, Matcuk GR, Barry CT, Chang HY, Kuo MD (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25(6):675–680. https://doi.org/10.1038/nbt1306

    Article  CAS  PubMed  Google Scholar 

  45. Shahzadi I, Zwanenburg A, Lattermann A, Linge A, Baldus C, Peeken JC, Combs SE, Diefenhardt M, Rödel C, Kirste S, Grosu AL, Baumann M, Krause M, Troost EGC, Löck S (2022) Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Sci Rep 12(1):10192. https://doi.org/10.1038/s41598-022-13967-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Siddique N, Paheding S, Elkin CP, Devabhaktuni V (2021) U‑net and its variants for medical image segmentation: a review of theory and applications. IEEE Access 9:82031–82057

    Article  Google Scholar 

  47. Starke S, Leger S, Zwanenburg A, Leger K, Lohaus F, Linge A, Schreiber A, Kalinauskaite G, Tinhofer I, Guberina N, Guberina M, Balermpas P, von der Grün J, Ganswindt U, Belka C, Peeken JC, Combs SE, Boeke S, Zips D, Richter C, Löck S (2020) 2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma. Sci Rep 10(1):15625. https://doi.org/10.1038/s41598-020-70542-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Taron J, Johannink J, Bitzer M, Nikolaou K, Notohamiprodjo M, Hoffmann R (2018) Added value of diffusion-weighted imaging in hepatic tumors and its impact on patient management. Cancer Imaging 18(1):10. https://doi.org/10.1186/s40644-018-0140-1

    Article  PubMed  PubMed Central  Google Scholar 

  49. Tsilimigras DI, Brodt P, Clavien PA, Muschel RJ, D’Angelica MI, Endo I, Parks RW, Doyle M, de Santibañes E, Pawlik TM (2021) Liver metastases. Nat Rev Dis Primers 7(1):27. https://doi.org/10.1038/s41572-021-00261-6

    Article  PubMed  Google Scholar 

  50. Uka K, Aikata H, Takaki S, Shirakawa H, Jeong SC, Yamashina K, Hiramatsu A, Kodama H, Takahashi S, Chayama K (2007) Clinical features and prognosis of patients with extrahepatic metastases from hepatocellular carcinoma. WJG 13(3):414–420. https://doi.org/10.3748/wjg.v13.i3.414

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities. Phys Med Biol 60(14):5471–5496. https://doi.org/10.1088/0031-9155/60/14/5471

    Article  PubMed  Google Scholar 

  52. Vatandoust S, Price TJ, Karapetis CS (2015) Colorectal cancer: metastases to a single organ. WJG 21(41):11767–11776. https://doi.org/10.3748/wjg.v21.i41.11767

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wangjam T, Zhang Z, Zhou XC, Lyer L, Faisal F, Soares KC, Fishman E, Hruban RH, Herman JM, Laheru D, Weiss M, Li M, De Jesus-Acosta A, Wolfgang CL, Zheng L (2015) Resected pancreatic ductal adenocarcinomas with recurrence limited in lung have a significantly better prognosis than those with other recurrence patterns. Oncotarget 6(34):36903–36910. https://doi.org/10.18632/oncotarget.5054

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wrobel J, Martin ML, Bakshi R, Calabresi PA, Elliot M, Roalf D, Gur RC, Gur RE, Henry RG, Nair G, Oh J, Papinutto N, Pelletier D, Reich DS, Rooney WD, Satterthwaite TD, Stern W, Prabhakaran K, Sicotte NL, Shinohara RT, NAIMS Cooperative (2020) Intensity warping for multisite MRI harmonization. Neuroimage 223:117242. https://doi.org/10.1016/j.neuroimage.2020.117242

    Article  CAS  PubMed  Google Scholar 

  55. Xu Y, Hosny A, Zeleznik R, Parmar C, Coroller T, Franco I, Mak RH, Aerts HJWL (2019) Deep learning predicts lung cancer treatment response from serial medical imaging. Clin Cancer Res 25(11):3266–3275. https://doi.org/10.1158/1078-0432.CCR-18-2495

    Article  PubMed  PubMed Central  Google Scholar 

  56. Yachida S, Jones S, Bozic I, Antal T, Leary R, Fu B, Kamiyama M, Hruban RH, Eshleman JR, Nowak MA, Velculescu VE, Kinzler KW, Vogelstein B, Iacobuzio-Donahue CA (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117. https://doi.org/10.1038/nature09515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zech CJ, Schwenke C, Endrikat J (2019) Diagnostic efficacy and safety of gadoxetate disodium vs gadobenate dimeglumine in patients with known or suspected focal liver lesions: results of a clinical phase III study. Magn Reson Insights 12:1178623X19827976. https://doi.org/10.1177/1178623X19827976

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J (2018) UNet++: a nested U‑net architecture for medical image segmentation. Deep learning in medical image analysis and multimodal learning for clinical decision support. 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI 2018, Granada, S 3–11 https://doi.org/10.1007/978-3-030-00889-5_1

    Book  Google Scholar 

  59. Zwanenburg A, Vallières M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, Ashrafinia S, Bakas S, Beukinga RJ, Boellaard R, Bogowicz M, Boldrini L, Buvat I, Cook GJR, Davatzikos C, Depeursinge A, Desseroit MC, Dinapoli N, Dinh CV, Echegaray S, Löck S (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295(2):328–338. https://doi.org/10.1148/radiol.2020191145

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nithya Bhasker.

Ethics declarations

Interessenkonflikt

N. Bhasker und S. Speidel arbeiten gemeinsam mit der Fa. Karl Storz im SurgOmics-Projekt (gefördert durch das Bundesministerium für Gesundheit). F. Schön und J.P. Kühn geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhasker, N., Schön, F., Kühn, J.P. et al. Bildgebende Diagnostik und der Einsatz von künstlicher Intelligenz beim Management von Organmetastasen. Onkologie 29, 182–191 (2023). https://doi.org/10.1007/s00761-022-01282-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01282-w

Schlüsselwörter

Keywords