Skip to main content
Log in

Roboterassistierte Chirurgie in der Kopf-Hals-Region

Robot-assisted surgery in the head and neck region

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

In der Kopf-Hals-Chirurgie haben sich die roboterassistierten Eingriffe noch nicht in der klinischen Routine etablieren können. Dies steht im Gegensatz zu der früher herrschenden Begeisterung für die transorale roboterassistierte Chirurgie (TORS) und den robotischen Erfolgen in anderen Fachbereichen, wie Allgemeinchirurgie, Urologie und Gynäkologie.

Methoden

In der vorliegenden Übersichtsarbeit werden einige der aktuell verfügbaren robotischen Systeme für die Kopf-Hals-Chirurgie beschrieben. Hierfür wurde eine selektive Literaturrecherche mit den Stichwörtern „head“, „neck“, „TORS“, „robotic surgery“, „oncology“ und „skull base“ in der Datenbank PubMed durchgeführt.

Ergebnisse

Die aktuell verfügbaren Systeme sind für den regelmäßigen Einsatz im Kopf-Hals-Bereich nicht ausreichend angepasst, was an den anatomisch begrenzten Platzverhältnissen und den teilweise schwer erreichbaren Operationsarealen liegt.

Schlussfolgerung

Für die notwendige Adaptation erscheint der Markt im Kopf-Hals-Bereich nicht ausreichend groß zu sein. Außerdem sind regionale Unterschiede zu berücksichtigen. Die Roboterchirurgie allgemein und auch TORS sind im angloamerikanischen Raum deutlich weiter verbreitet als im europäischen oder asiatischen Markt. Trotz allem zeigen einige Machbarkeitsstudien das Potenzial, aber auch die Konflikte bei der Anwendung von Robotik in der Kopf-Hals-Chirurgie auf.

Abstract

Background

In head and neck surgery, robot-assisted interventions have not yet become established in clinical routine. This is surprising given the earlier enthusiasm for transoral robot-assisted surgery (TORS) and robotic successes in other specialties such as general surgery, urology and gynaecology.

Methods

The review article describes some of the currently available robotic systems for head and neck surgery. For this purpose, a selective literature search was carried out on PubMed using the keywords “head”, “neck”, “TORS”, “robotic surgery”, “oncology” and “skull base”.

Results

The currently available systems are not adequately adapted for regular use in the head and neck area due to the anatomically limited space and the sometimes difficult to reach operating areas.

Conclusion

The market in the head and neck area does not appear to be large enough for the necessary adaptation. Regional differences must also be taken into account. Robotic surgery in general and TORS are much more widespread in the Anglo-American region than in the European or Asian markets. Nevertheless, some current feasibility studies show the potential, but also the risks in the use of robotics in head and neck surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Annual Report, Intuitive Surgical, Sunnyvale, CA 2018–2020

  2. Boehm F, Graesslin R, Theodoraki MN et al (2021) Current advances in robotics for head and neck surgery—A systematic review. Cancers 13(6):1398. https://doi.org/10.3390/cancers13061398

    Article  Google Scholar 

  3. Bravi CA, Paciotti M, Sarchi L et al (2022) Robot-assisted radical prostatectomy with the novel Hugo robotic system: initial experience and optimal surgical set-up at a tertiary referral robotic center. Eur Urol 82:233–237

    Article  Google Scholar 

  4. Chauvet D, Hans S, Missistrano A et al (2017) Transoral robotic surgery for sellar tumors: first clinical study. J Neurosurg 127:941–948

    Article  Google Scholar 

  5. Doazan M, Hans S, Moriniere S et al (2018) Oncologic outcomes with transoral robotic surgery for supraglottic squamous cell carcinoma: results of the French Robotic Surgery Group of GETTEC. Head Neck 40:2050–2059

    Article  Google Scholar 

  6. Faulkner J, Naidoo R, Arora A et al (2020) Combined robotic transorbital and transnasal approach to the nasopharynx and anterior skull base: feasibility study. Clin Otolaryngol 45:630–633

    Article  Google Scholar 

  7. Friedrich DT, Modes V, Hoffmann TK et al (2018) Teleoperated tubular continuum robots for transoral surgery—feasibility in a porcine larynx model. Int J Med Robot 14(5):e1928. https://doi.org/10.1002/rcs.1928

    Article  CAS  Google Scholar 

  8. Friedrich DT, Scheithauer MO, Greve J et al (2017) Recent advances in robot-assisted head and neck surgery. Int J Med Robot. https://doi.org/10.1002/rcs.1744

    Article  Google Scholar 

  9. Friedrich DT, Sommer F, Scheithauer MO et al (2017) An innovate robotic endoscope guidance system for transnasal sinus and skull base surgery: proof of concept. J Neurol Surg B Skull Base 78:466–472

    Article  CAS  Google Scholar 

  10. Gu X, Li C, Xiao X et al (2019) A compliant transoral surgical robotic system based on a parallel flexible mechanism. Ann Biomed Eng 47:1329–1344

    Article  Google Scholar 

  11. Henry LE, Haugen TW, Rassekh CH et al (2019) A novel transpalatal-transoral robotic surgery approach to clival chordomas extending into the nasopharynx. Head Neck 41:E133–E140

    Google Scholar 

  12. Heuermann M, Michael AP, Crosby DL (2020) Robotic skull base surgery. Otolaryngol Clin North Am 53:1077–1089

    Article  Google Scholar 

  13. Hoffmann TK (2020) ORATOR study: surgery or radiotherapy for oropharyngeal carcinoma in the context of HPV? HNO 68:278–279

    Article  Google Scholar 

  14. Hoffmann TK (2022) The ORATOR trials—an update: primary surgery or radiotherapy for HPV-associated oropharyngeal cancer. HNO 70(8):579–580. https://doi.org/10.1007/s00106-022-01195-5

    Article  Google Scholar 

  15. Holsinger FC, Magnuson JS, Weinstein GS et al (2019) A next-generation single-port robotic surgical system for Transoral robotic surgery: results from prospective nonrandomized clinical trials. JAMA Otolaryngol Head Neck Surg 145:1027–1034

    Article  Google Scholar 

  16. Kundrat D, Graesslin R, Schoob A et al (2021) Preclinical performance evaluation of a robotic endoscope for non-contact laser surgery. Ann Biomed Eng 49:585–600

    Article  CAS  Google Scholar 

  17. Lawson G, Mendelsohn A, Fakhoury R et al (2018) Transoral robotic surgery total laryngectomy. Orl J Otorhinolaryngol Relat Spec 80:171–177

    Article  Google Scholar 

  18. Lechien JR, Baudouin R, Circiu MP et al (2022) Transoral robotic cordectomy for glottic carcinoma: a rapid review. Eur Arch Otorhinolaryngol 279(11):5449–5456. https://doi.org/10.1007/s00405-022-07514-4

    Article  Google Scholar 

  19. Lee SY, Park YM, Byeon HK et al (2014) Comparison of oncologic and functional outcomes after transoral robotic lateral oropharyngectomy versus conventional surgery for T1 to T3 tonsillar cancer. Head Neck 36:1138–1145

    Article  Google Scholar 

  20. Marinho MM, Harada K, Morita A et al (2020) SmartArm: Integration and validation of a versatile surgical robotic system for constrained workspaces. Int J Med Robot 16:e2053

    Article  Google Scholar 

  21. Mendelsohn AH, Lawson G (2021) Single-port transoral robotic surgery hypopharyngectomy. Head Neck 43:3234–3237

    Article  Google Scholar 

  22. Monterossi G, Pedone Anchora L, Gueli Alletti S et al (2022) The first European gynaecological procedure with the new surgical robot Hugo RAS. A total hysterectomy and salpingo-oophorectomy in a woman affected by BRCA‑1 mutation. Facts Views Vis Obgyn 14:91–94

    Article  CAS  Google Scholar 

  23. Morisod B, Guinchard AC, Gorphe P et al (2018) Transoral robotic-assisted supracricoid partial laryngectomy with cricohyoidoepiglottopexy: procedure development and outcomes of initial cases. Head Neck 40:2254–2262

    Article  Google Scholar 

  24. Nichols AC, Theurer J, Prisman E et al (2022) Randomized trial of radiotherapy versus transoral robotic surgery for oropharyngeal squamous cell carcinoma: long-term results of the ORATOR trial. J Clin Oncol 40:866–875

    Article  CAS  Google Scholar 

  25. O’malley BW Jr., Weinstein GS, Snyder W et al (2006) Transoral robotic surgery (TORS) for base of tongue neoplasms. Laryngoscope 116:1465–1472

    Article  Google Scholar 

  26. Ogiwara T, Goto T, Nagm A et al (2017) Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot: initial experience in 43 patients. Neurosurg Focus 42:E10

    Article  Google Scholar 

  27. Orosco RK, Tam K, Nakayama M et al (2019) Transoral supraglottic laryngectomy using a next-generation single-port robotic surgical system. Head Neck 41:2143–2147

    Article  Google Scholar 

  28. Schild LR, Bohm F, Boos M et al (2021) Adding flexible instrumentation to a curved videolaryngoscope: a novel tool for laryngeal surgery. Laryngoscope 131:E561–E568

    Article  Google Scholar 

  29. Schuler PJ, Duvvuri U, Friedrich DT et al (2015) First use of a computer-assisted operator-controlled flexible endoscope for transoral surgery. Laryngoscope 125:645–648

    Article  Google Scholar 

  30. Schuler PJ, Hoffmann TK, Veit JA et al (2017) Hybrid procedure for total laryngectomy with a flexible robot-assisted surgical system. Int J Med Robot. https://doi.org/10.1002/rcs.1749

    Article  Google Scholar 

  31. Schuler PJ, Scheithauer M, Rotter N et al (2015) A single-port operator-controlled flexible endoscope system for endoscopic skull base surgery. HNO 63:189–194

    Article  CAS  Google Scholar 

  32. Swaney PJ, Gilbert HB, Webster RJ 3rd et al (2015) Endonasal skull base tumor removal using concentric tube continuum robots: a phantom study. J Neurol Surg B Skull Base 76:145–149

    Google Scholar 

  33. Tamaki A, Miles BA, Lango M et al (2018) AHNS series: do you know your guidelines? Review of current knowledge on laryngeal cancer. Head Neck 40:170–181

    Article  Google Scholar 

  34. Vahl JM, Schuler PJ, Greve J et al (2019) Die Laryngektomie – noch zeitgemäß? HNO 67:955–976

    Article  CAS  Google Scholar 

  35. Wang CC, Liu SA, Wu SH et al (2016) Transoral robotic surgery for early glottic carcinoma involving anterior commissure: preliminary reports. Head Neck 38:913–918

    Article  Google Scholar 

  36. Weinstein GS, O’malley BW Jr., Snyder W et al (2007) Transoral robotic surgery: radical tonsillectomy. Arch Otolaryngol Head Neck Surg 133:1220–1226

    Article  Google Scholar 

  37. Zappa F, Madoglio A, Ferrari M et al (2021) Hybrid Robotics for Endoscopic Transnasal Skull Base Surgery: Single-Centre Case Series. Oper Neurosurg 21:426–435

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Schuler.

Ethics declarations

Interessenkonflikt

P. J. Schuler, F. Böhm, M. N. Theodoraki, J. Greve und T. K. Hoffmann geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schuler, P.J., Böhm, F., Theodoraki, M.N. et al. Roboterassistierte Chirurgie in der Kopf-Hals-Region. Onkologie 29, 24–28 (2023). https://doi.org/10.1007/s00761-022-01251-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01251-3

Schlüsselwörter

Keywords

Navigation