Skip to main content

Advertisement

Log in

Pathogenese und molekulare Diagnostik der akuten myeloischen Leukämie

Pathogenesis and molecular diagnosis of acute myeloid leukemia

  • Leitthema
  • Published:
Die Onkologie Aims and scope

Zusammenfassung

Hintergrund

Die akute myeloische Leukämie (AML) ist eine klonale Erkrankung hämatopoetischer Stamm- und Progenitorzellen des Knochenmarkes mit einem Altersgipfel im fortgeschrittenen Erwachsenenalter. Akute myeloische Leukämien können sowohl spontan und de novo als auch hereditär infolge von Keimbahnmutationen, sekundär aus anderen hämatologischen Erkrankungen oder therapie-induziert nach vorausgegangener Chemo- oder Strahlentherapie entstehen. Unabhängig vom Entstehungsmechanismus sind alle Formen der AML auf die klonale Expansion hämatopoetischer Vorläuferzellen mit rekurrenten Treibermutationen in Onkogenen und Tumorsuppressoren oder chromosomalen Aberrationen zurückzuführen.

Schlussfolgerung

Insbesondere moderne Sequenzierungsmethoden haben in den letzten Jahren zu der Erkenntnis geführt, dass die Expansion hämatopoetischer Klone mit bestimmten Treibermutationen bei gesunden Personen mit zunehmendem Lebensalter häufig nachzuweisen und mit einem erhöhten Risiko des Auftretens einer AML verbunden ist. Der Nachweis molekularer Aberrationen gehört mittlerweile zur Primärdiagnostik der AML und ist sowohl von prognostischer als auch therapeutischer Bedeutung. Im weiteren Erkrankungsverlauf und nach Abschluss der Therapie werden initial nachgewiesene Mutationen zur Bestimmung der messbaren residuellen Erkrankung (MRD) verwendet, die ebenfalls prognostisch bedeutsam ist und die Möglichkeit präemptiver Therapien bereits vor dem Auftreten eines hämatologischen Rezidivs eröffnet.

Abstract

Background

Acute myeloid leukemia (AML) is a clonal disorder of hematopoietic stem and progenitor cells in the bone marrow with a rising frequency with increasing age. Acute myeloid leukemias can develop both spontaneously and de novo as well as a consequence of hereditary germ line mutations and secondary to other hematological malignancies and cytotoxic chemo- and radiotherapy. All types of AML derive from hematopoietic cells, which clonally expand due to driver mutations in oncogenes and tumor suppressors or chromosomal aberrations that confer a selective growth advantage.

Conclusion

During recent years, modern sequencing technologies have led to the realization that in healthy individuals hematopoietic cell clones with mutations in certain driver genes expand with increasing age, a phenomenon that is associated with an increased risk of developing acute myeloid leukemia. Because of its prognostic and therapeutic relevance, the analysis of molecular aberrations meanwhile is an integral part of the initial diagnostic process in patients with AML. Mutations detected at first diagnosis further serve for measurable residual disease (MRD) detection during treatment and after completion of therapy, which is of prognostic impact as well and of relevance for implementation of preemptive treatments already ahead of full-blown hematologic relapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Juliusson G, Antunovic P, Derolf A et al (2009) Age and acute myeloid leukemia: real world data on decision to treat and outcomes from the Swedish Acute Leukemia Registry. Blood 113:4179–4187

    Article  CAS  PubMed  Google Scholar 

  2. Kakiuchi N, Ogawa S (2021) Clonal expansion in non-cancer tissues. Nat Rev Cancer 21:239–256

    Article  CAS  PubMed  Google Scholar 

  3. Genovese G, Kahler AK, Handsaker RE et al (2014) Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med 371:2477–2487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Jaiswal S, Fontanillas P, Flannick J et al (2014) Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371:2488–2498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Abelson S, Collord G, Ng SWK et al (2018) Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559:400–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Young AL, Challen GA, Birmann BM et al (2016) Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat Commun 7:12484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Desai P, Mencia-Trinchant N, Savenkov O et al (2018) Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med 24:1015–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaiswal S, Ebert BL (2019) Clonal hematopoiesis in human aging and disease. Science 366:6465

    Article  CAS  Google Scholar 

  9. Jonason AS, Kunala S, Price GJ et al (1996) Frequent clones of p53-mutated keratinocytes in normal human skin. Proc Natl Acad Sci U S A 93:14025–14029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martincorena I, Fowler JC, Wabik A et al (2018) Somatic mutant clones colonize the human esophagus with age. Science 362:911–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martincorena I, Roshan A, Gerstung M et al (2015) Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shain AH, Yeh I, Kovalyshyn I et al (2015) The genetic evolution of melanoma from precursor lesions. N Engl J Med 373:1926–1936

    Article  PubMed  CAS  Google Scholar 

  13. Yoshida K, Gowers KHC, Lee-Six H et al (2020) Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578:266–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang J, Fewings E, Chang D et al (2020) The genomic landscapes of individual melanocytes from human skin. Nature 586:600–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kakiuchi N, Yoshida K, Uchino M et al (2020) Frequent mutations that converge on the NFKBIZ pathway in ulcerative colitis. Nature 577:260–265

    Article  CAS  PubMed  Google Scholar 

  16. Lee-Six H, Olafsson S, Ellis P et al (2019) The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574:532–537

    Article  CAS  PubMed  Google Scholar 

  17. Moore L, Leongamornlert D, Coorens THH et al (2020) The mutational landscape of normal human endometrial epithelium. Nature 580:640–646

    Article  CAS  PubMed  Google Scholar 

  18. Suda K, Nakaoka H, Yoshihara K et al (2018) Clonal expansion and diversification of cancer-associated mutations in endometriosis and normal endometrium. Cell Rep 24:1777–1789

    Article  CAS  PubMed  Google Scholar 

  19. Li R, Du Y, Chen Z et al (2020) Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370:82–89

    Article  CAS  PubMed  Google Scholar 

  20. Lawson ARJ, Abascal F, Coorens THH et al (2020) Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370:75–82

    Article  CAS  PubMed  Google Scholar 

  21. Xie M, Lu C, Wang J et al (2014) Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med 20:1472–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Welch JS, Ley TJ, Link DC et al (2012) The origin and evolution of mutations in acute myeloid leukemia. Cell 150:264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Osorio FG, Rosendahl Huber A, Oka R et al (2018) Somatic mutations reveal lineage relationships and age-related mutagenesis in human hematopoiesis. Cell Rep 25:2308–2316.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yoshizato T, Dumitriu B, Hosokawa K et al (2015) Somatic mutations and clonal hematopoiesis in aplastic anemia. N Engl J Med 373:35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Laurie CC, Laurie CA, Rice K et al (2012) Detectable clonal mosaicism from birth to old age and its relationship to cancer. Nat Genet 44:642–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacobs KB, Yeager M, Zhou W et al (2012) Detectable clonal mosaicism and its relationship to aging and cancer. Nat Genet 44:651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Niroula A, Sekar A, Murakami MA et al (2021) Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med 27:1921–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loh PR, Genovese G, Handsaker RE et al (2018) Insights into clonal haematopoiesis from 8,342 mosaic chromosomal alterations. Nature 559:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Loh PR, Genovese G, McCarroll SA (2020) Monogenic and polygenic inheritance become instruments for clonal selection. Nature 584:136–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Warren JT, Link DC (2020) Clonal hematopoiesis and risk for hematologic malignancy. Blood 136:1599–1605

    PubMed  PubMed Central  Google Scholar 

  31. Bick AG, Weinstock JS, Nandakumar SK et al (2020) Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature 586:763–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Olcaydu D, Harutyunyan A, Jager R et al (2009) A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet 41:450–454

    Article  CAS  PubMed  Google Scholar 

  33. Jones AV, Chase A, Silver RT et al (2009) JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms. Nat Genet 41:446–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Terao C, Suzuki A, Momozawa Y et al (2020) Chromosomal alterations among age-related haematopoietic clones in Japan. Nature 584:130–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tawana K, Brown AL, Churpek JE (2021) Integrating germline variant assessment into routine clinical practice for myelodysplastic syndrome and acute myeloid leukaemia: current strategies and challenges. Br J Haematol 196(6):1293–1310

    Article  PubMed  CAS  Google Scholar 

  36. Arber DA, Orazi A, Hasserjian R et al (2016) The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127:2391–2405

    Article  CAS  PubMed  Google Scholar 

  37. Song WJ, Sullivan MG, Legare RD et al (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175

    Article  CAS  PubMed  Google Scholar 

  38. Noris P, Perrotta S, Seri M et al (2011) Mutations in ANKRD26 are responsible for a frequent form of inherited thrombocytopenia: analysis of 78 patients from 21 families. Blood 117:6673–6680

    Article  CAS  PubMed  Google Scholar 

  39. Pippucci T, Savoia A, Perrotta S et al (2011) Mutations in the 5′ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am J Hum Genet 88:115–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang MY, Churpek JE, Keel SB et al (2015) Germline ETV6 mutations in familial thrombocytopenia and hematologic malignancy. Nat Genet 47:180–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Noetzli L, Lo RW, Lee-Sherick AB et al (2015) Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet 47:535–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hahn CN, Chong CE, Carmichael CL et al (2011) Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet 43:1012–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feurstein S, Adegunsoye A, Mojsilovic D et al (2020) Telomere biology disorder prevalence and phenotypes in adults with familial hematologic and/or pulmonary presentations. Blood Adv 4:4873–4886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen DH, Below JE, Shimamura A et al (2016) Ataxia-pancytopenia syndrome is caused by missense mutations in SAMD9L. Am J Hum Genet 98:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Narumi S, Amano N, Ishii T et al (2016) SAMD9 mutations cause a novel multisystem disorder, MIRAGE syndrome, and are associated with loss of chromosome 7. Nat Genet 48:792–797

    Article  CAS  PubMed  Google Scholar 

  46. Douglas SPM, Siipola P, Kovanen PE et al (2019) ERCC6L2 defines a novel entity within inherited acute myeloid leukemia. Blood 133:2724–2728

    Article  CAS  PubMed  Google Scholar 

  47. Smith ML, Cavenagh JD, Lister TA et al (2004) Mutation of CEBPA in familial acute myeloid leukemia. N Engl J Med 351:2403–2407

    Article  CAS  PubMed  Google Scholar 

  48. Tawana K, Wang J, Renneville A et al (2015) Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood 126:1214–1223

    Article  CAS  PubMed  Google Scholar 

  49. Polprasert C, Schulze I, Sekeres MA et al (2015) Inherited and somatic defects in DDX41 in myeloid neoplasms. Cancer Cell 27:658–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brown AL, Arts P, Carmichael CL et al (2020) RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 4:1131–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Churpek JE, Pyrtel K, Kanchi KL et al (2015) Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 126:2484–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Granfeldt Ostgard LS, Medeiros BC, Sengelov H et al (2015) Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: a national population-based cohort study. J Clin Oncol 33:3641–3649

    Article  PubMed  Google Scholar 

  53. Greenberg PL, Tuechler H, Schanz J et al (2012) Revised international prognostic scoring system for myelodysplastic syndromes. Blood 120:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gangat N, Caramazza D, Vaidya R et al (2011) DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 29:392–397

    Article  PubMed  Google Scholar 

  55. Grinfeld J, Nangalia J, Baxter EJ et al (2018) Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med 379:1416–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tefferi A, Guglielmelli P, Larson DR et al (2014) Long-term survival and blast transformation in molecularly annotated essential thrombocythemia, polycythemia vera, and myelofibrosis. Blood 124:2507–2513 (quiz 2615)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lindsley RC, Mar BG, Mazzola E et al (2015) Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 125:1367–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Courtier F, Carbuccia N, Garnier S et al (2017) Genomic analysis of myeloproliferative neoplasms in chronic and acute phases. Haematologica 102:e11–e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Super HJ, McCabe NR, Thirman MJ et al (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711

    Article  CAS  PubMed  Google Scholar 

  60. Morton LM, Dores GM, Schonfeld SJ et al (2019) Association of chemotherapy for solid tumors with development of therapy-related myelodysplastic syndrome or acute myeloid leukemia in the modern era. JAMA Oncol 5:318–325

    Article  PubMed  Google Scholar 

  61. Hsu JI, Dayaram T, Tovy A et al (2018) PPM1D mutations drive clonal hematopoiesis in response to cytotoxic chemotherapy. Cell Stem Cell 23:700–713.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bolton KL, Ptashkin RN, Gao T et al (2020) Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nat Genet 52:1219–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wong TN, Ramsingh G, Young AL et al (2015) Role of TP53 mutations in the origin and evolution of therapy-related acute myeloid leukaemia. Nature 518:552–555

    Article  CAS  PubMed  Google Scholar 

  64. Takahashi K, Wang F, Kantarjian H et al (2017) Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol 18:100–111

    Article  PubMed  Google Scholar 

  65. Dohner H, Estey E, Grimwade D et al (2017) Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 129:424–447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Heuser M, Ofran Y, Boissel N et al (2020) Acute myeloid leukaemia in adult patients: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 31:697–712

    Article  CAS  PubMed  Google Scholar 

  67. National Comprehensive Cancer Network (2021) NCCN clinical practice guidelines in oncology—Acute myeloid leukemia. In: Plymouth Meeting, PA, USA

    Google Scholar 

  68. Stone RM, Larson RA, Dohner H (2017) Midostaurin in FLT3-mutated acute myeloid leukemia. N Engl J Med 377:1903

    Article  PubMed  Google Scholar 

  69. Fournier E, Duployez N, Ducourneau B et al (2020) Mutational profile and benefit of gemtuzumab ozogamicin in acute myeloid leukemia. Blood 135:542–546

    Article  PubMed  Google Scholar 

  70. Rollig C, Kramer M, Schliemann C et al (2020) Does time from diagnosis to treatment affect the prognosis of patients with newly diagnosed acute myeloid leukemia? Blood 136:823–830

    Article  PubMed  Google Scholar 

  71. Schuurhuis GJ, Heuser M, Freeman S et al (2018) Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood 131:1275–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heuser M, Freeman SD, Ossenkoppele GJ et al (2021) 2021 Update on MRD in acute myeloid leukemia: a consensus document from the European LeukemiaNet MRD Working Party. Blood 138:2753–2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daver N, Schlenk RF, Russell NH et al (2019) Targeting FLT3 mutations in AML: review of current knowledge and evidence. Leukemia 33:299–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Thiede C, Steudel C, Mohr B et al (2002) Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99:4326–4335

    Article  CAS  PubMed  Google Scholar 

  75. Schlenk RF, Kayser S, Bullinger L et al (2014) Differential impact of allelic ratio and insertion site in FLT3-ITD-positive AML with respect to allogeneic transplantation. Blood 124:3441–3449

    Article  CAS  PubMed  Google Scholar 

  76. Falini B, Brunetti L, Sportoletti P et al (2020) NPM1-mutated acute myeloid leukemia: from bench to bedside. Blood 136:1707–1721

    Article  PubMed  Google Scholar 

  77. Pratcorona M, Brunet S, Nomdedeu J et al (2013) Favorable outcome of patients with acute myeloid leukemia harboring a low-allelic burden FLT3-ITD mutation and concomitant NPM1 mutation: relevance to post-remission therapy. Blood 121:2734–2738

    Article  CAS  PubMed  Google Scholar 

  78. Dohner K, Thiede C, Jahn N et al (2020) Impact of NPM1/FLT3-ITD genotypes defined by the 2017 European LeukemiaNet in patients with acute myeloid leukemia. Blood 135:371–380

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wilhelmson AS, Porse BT (2020) CCAAT enhancer binding protein alpha (CEBPA) biallelic acute myeloid leukaemia: cooperating lesions, molecular mechanisms and clinical relevance. Br J Haematol 190:495–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tarlock K, Lamble AJ, Wang YC et al (2021) CEBPA-bZip mutations are associated with favorable prognosis in de novo AML: a report from the Children’s Oncology Group. Blood 138:1137–1147

    Article  CAS  PubMed  Google Scholar 

  81. Taube F, Georgi JA, Kramer M et al (2022) CEBPA mutations in 4708 patients with acute myeloid leukemia: differential impact of bZIP and TAD mutations on outcome. Blood 139:87–103

    Article  CAS  PubMed  Google Scholar 

  82. Wakita S, Sakaguchi M, Oh I et al (2022) Prognostic impact of CEBPA bZIP domain mutation in acute myeloid leukemia. Blood Adv 6:238–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hunter AM, Sallman DA (2019) Current status and new treatment approaches in TP53 mutated AML. Best Pract Res Clin Haematol 32:134–144

    Article  PubMed  Google Scholar 

  84. Bullinger L, Dohner K, Dohner H (2017) Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 35:934–946

    Article  CAS  PubMed  Google Scholar 

  85. Perl AE, Martinelli G, Cortes JE et al (2019) Gilteritinib or chemotherapy for relapsed or refractory FLT3-mutated AML. N Engl J Med 381:1728–1740

    Article  CAS  PubMed  Google Scholar 

  86. Freeman SD, Hourigan CS (2019) MRD evaluation of AML in clinical practice: are we there yet? Hematology Am Soc Hematol Educ Program 2019:557–569

    Article  PubMed  PubMed Central  Google Scholar 

  87. Voso MT, Ottone T, Lavorgna S et al (2019) MRD in AML: the role of new techniques. Front Oncol 9:655

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ivey A, Hills RK, Simpson MA et al (2016) Assessment of minimal residual disease in standard-risk AML. N Engl J Med 374:422–433

    Article  CAS  PubMed  Google Scholar 

  89. Yin JA, O’Brien MA, Hills RK et al (2012) Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: results of the United Kingdom MRC AML-15 trial. Blood 120:2826–2835

    Article  CAS  PubMed  Google Scholar 

  90. Jongen-Lavrencic M, Grob T, Hanekamp D et al (2018) Molecular minimal residual disease in acute myeloid leukemia. N Engl J Med 378:1189–1199

    Article  CAS  PubMed  Google Scholar 

  91. Thol F, Gabdoulline R, Liebich A et al (2018) Measurable residual disease monitoring by NGS before allogeneic hematopoietic cell transplantation in AML. Blood 132:1703–1713

    Article  CAS  PubMed  Google Scholar 

  92. Heuser M, Heida B, Buttner K et al (2021) Posttransplantation MRD monitoring in patients with AML by next-generation sequencing using DTA and non-DTA mutations. Blood Adv 5:2294–2304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hourigan CS, Dillon LW, Gui G et al (2020) Impact of conditioning intensity of allogeneic transplantation for acute myeloid leukemia with genomic evidence of residual disease. J Clin Oncol 38:1273–1283

    Article  CAS  PubMed  Google Scholar 

  94. Platzbecker U, Middeke JM, Sockel K et al (2018) Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): an open-label, multicentre, phase 2 trial. Lancet Oncol 19:1668–1679

    Article  CAS  PubMed  Google Scholar 

  95. Wei AH, Dohner H, Pocock C et al (2020) Oral Azacitidine maintenance therapy for acute myeloid leukemia in first remission. N Engl J Med 383:2526–2537

    Article  CAS  PubMed  Google Scholar 

  96. Duncavage EJ, Schroeder MC, O’Laughlin M et al (2021) Genome sequencing as an alternative to cytogenetic analysis in myeloid cancers. N Engl J Med 384:924–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Petti AA, Williams SR, Miller CA et al (2019) A general approach for detecting expressed mutations in AML cells using single cell RNA-sequencing. Nat Commun 10:3660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Velten L, Story BA, Hernandez-Malmierca P et al (2021) Identification of leukemic and pre-leukemic stem cells by clonal tracking from single-cell transcriptomics. Nat Commun 12:1366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Madaci L, Colle J, Venton G et al (2021) The contribution of single-cell analysis of acute leukemia in the therapeutic strategy. Biomark Res 9:50

    Article  PubMed  PubMed Central  Google Scholar 

  100. Eckardt JN, Bornhauser M, Wendt K et al (2020) Application of machine learning in the management of acute myeloid leukemia: current practice and future prospects. Blood Adv 4:6077–6085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Eckardt JN, Schmittmann T, Riechert S et al (2022) Deep learning identifies acute promyelocytic leukemia in bone marrow smears. BMC Cancer 22:201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Eckardt JN, Middeke JM, Riechert S et al (2022) Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 36:111–118

    Article  CAS  PubMed  Google Scholar 

  103. Gerstung M, Papaemmanuil E, Martincorena I et al (2017) Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat Genet 49:332–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwin Krämer.

Ethics declarations

Interessenkonflikt

A. Krämer: Speaker: Hoffmann-La Roche; Advisory Boards: Hoffmann-La Roche, AbbVie; Research funding: BMS, Bayer. C. Thiede: Co-Ownership: AgenDix GmbH; Advisory Boards: Novartis, Astellas, JAZZ; Speaker: Novartis, JAZZ, Astellas.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, A., Thiede, C. Pathogenese und molekulare Diagnostik der akuten myeloischen Leukämie. Onkologie 28, 463–473 (2022). https://doi.org/10.1007/s00761-022-01183-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-022-01183-y

Schlüsselwörter

Keywords

Navigation