Der Onkologe

, Volume 24, Issue 4, pp 295–302 | Cite as

Moderne Radiotherapie beim Hodgkin-Lymphom

  • Christian Baues
  • Johannes Rosenbrock
  • Klaus Herfarth
  • Peter Lukas
  • Rita Engenhart-Cabillic
  • Heinz Schmidtberger
  • Simone Marntiz
  • Hans Theodor Eich
Leitthema
  • 71 Downloads

Zusammenfassung

Hintergrund

Die Behandlung der zumeist jungen Patienten mit einem Hodgkin-Lymphom (HL) führt in den meisten Fällen zu einer dauerhaften Heilung. Durch kontinuierliche Behandlung der Patienten in klinischen Studien konnte wie bei keiner anderen Erkrankung eine Therapieoptimierung erfolgen. Anfängliche Großfeldbestrahlung wurde nach und nach ebenso wie die Bestrahlungsdosis reduziert, und durch die Hinzunahme der Chemotherapie wurde die „combined modality“ etabliert.

Methoden

Es erfolgte eine selektive Literaturrecherche in der Datenbank Pubmed zum Thema Hodgkin-Lymphom und Radiotherapie.

Ergebnisse

Aktuell prägen technische Fortschritte und neue Zielvolumenkonzepte die Planung und Durchführung der Bestrahlung wie nie zuvor. Aufgrund der exzellenten Prognose der Patienten spielen akute, aber v. a. Langzeitnebenwirkungen eine wesentliche Rolle. Lungenfibrose, Herzinfarkt und sekundäre Malignome sind mögliche Nebenwirkungen, deren Risiko durch sorgfältige Bestrahlungsplanung und Bestrahlungsdurchführung beeinflusst werden kann. Aus diesem Grund spielen Entwicklungen, wie die Bestrahlung in tiefer Inspiration (DIBH) und moderne Bestrahlungstechniken wie z. B. intensitätsmodulierte Radiotherapie (IMRT) und bildgeführte Radiotherapie (IGRT), eine ebenso herausragende Rolle im strahlentherapeutischen Alltag wie die neuen Zielvolumenkonzepte der International Lymphoma Radiation Oncology Group (ILROG).

Schlussfolgerung

Durch die Verwendung moderner Techniken in der Bestrahlungsplanung und Bestrahlungsdurchführung kann eine erhöhte Präzision erreicht werden. Ebenso zeigen aktuelle Auswertungen, dass mit hoher Wahrscheinlichkeit auch ein positiver Einfluss auf die akuten und Langzeitnebenwirkungen genommen werden kann.

Schlüsselwörter

„Combined modality“ Involved-Site-Radiotherapie Deep Inspiration Breath Hold Intensitätsmodulierte Radiotherapie  Volumetrisch modulierte Arc-Therapie 

Abkürzungen

3-D

Dreidimensional

ABVD

Adriamycin, Bleomycin, Vinblastin, Darcarbazin

AP/PA

Anterior-posterior/posterior-anterior

BEACOPP

Cyclophosphamid, Etoposid, Adriamycin, Vincristin, Bleomycin, Prednisolon

CT

Computertomographie

CTV

„Clinical target volume“

DEGRO

Deutsche Gesellschaft für Radioonkologie

DIBH

„Deep inspiration breath hold“

EF-RT

Extended-Field-Radiotherapie

EORTC

European Oranisation of Research and Treatment of Cancer

GELA

Groupe d’Etude des Lymphomes de l’Adulte

GHSG

German Hodgkin Study Group

GTV

„Gross tumor volume“

HL

Hodgkin-Lymphom

IF-RT

Involved-Field-Radiotherapie

IGRT

„Image guided radiotherapy“

ILROG

International Lymphoma Radiation Oncology Group

IMRT

Intensitätsmodulierte Radiotherapie

IN-RT

Involved-Node-Radiotherapie

IS-RT

Involved-Site-Radiotherapie

OS

„Overall survival“

PET

Positronenemissionstomographie

PFS

„Progression free survival“

PTV

„Planning target volume“

RA

„Rapid arc“

RT

Radiotherapie

VMAT

Volumetrisch modulierte Arc-Therapie

Modern radiotherapy in Hodgkin’s lymphoma

Abstract

Background

The treatment of mostly young patients with Hodgkin lymphoma (HL) in most cases leads to a permanent cure. Unlike no other disease, the continuous treatment of patients in clinical trials led to an ongoing optimization of therapy. The initial large field radiotherapy was reduced as well as the irradiation dosage and by the addition of chemotherapy the “combined modality” was established.

Method

A selective review of the available data on HL and radiotherapy was carried out based on the PubMed database.

Results

Current technical innovations and new target volume definitions strongly influence radiotherapy planning and execution more than ever. Due to the excellent prognosis of HL patients, long-term toxicity plays a pivotal role. Lung fibroses, cardiac infarction and secondary malignancies are possible side effects. Their risk can be influenced by a thorough radiotherapy planning and execution. Thus, techniques, such as deep inspiration breath hold (DIBH) and modern radiotherapy techniques, such as intensity modulated radiotherapy (IMRT) and image guided radiotherapy (IGRT) have a strong impact, very similar to the new target volume definitions of the International Lymphoma Radiation Oncology Group (ILROG).

Conclusion

The use of improved techniques in radiotherapy planning and performance has made high precision radiotherapy feasible. Furthermore, current data suggest a positive influence on acute and long-term side effects.

Keywords

“Combined modality” Involved site radiotherapy Deep inspiration breath hold  Intensity modulated radiotherapy Volumetric-modulated arc therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. Baues, J. Rosenbrock, K. Herfarth, P. Lukas, R. Engenhart-Cabillic, H. Schmidtberger, S. Marntiz und H.T. Eich geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    André MPE, Girinsky T, Federico M et al (2017) Early Positron Emission Tomography Response-Adapted Treatment in Stage I and II Hodgkin Lymphoma: Final Results of the Randomized EORTC/LYSA/FIL H10 Trial. J Clin Oncol 35:1786–1794.  https://doi.org/10.1200/JCO.2016.68.6394 CrossRefPubMedGoogle Scholar
  2. 2.
    Antoni D, Natarajan-Ame S, Meyer P et al (2013) Contribution of three-dimensional conformal intensity-modulated radiation therapy for women affected by bulky stage II supradiaphragmatic Hodgkin disease. Radiat Oncol 8:112.  https://doi.org/10.1186/1748-717X-8-112 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aznar MC, Maraldo MV, Schut DA et al (2015) Minimizing late effects for patients with mediastinal Hodgkin lymphoma: deep inspiration breath-hold, IMRT, or both? Int J Radiat Oncol Biol Phys 92:169–174.  https://doi.org/10.1016/j.ijrobp.2015.01.013 CrossRefPubMedGoogle Scholar
  4. 4.
    Cella L, Liuzzi R, Magliulo M et al (2010) Radiotherapy of large target volumes in Hodgkin’s lymphoma: normal tissue sparing capability of forward IMRT versus conventional techniques. Radiat Oncol 5:33.  https://doi.org/10.1186/1748-717X-5-33 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chera BS, Rodriguez C, Morris CG et al (2009) Dosimetric comparison of three different nodal irradiation techniques for stage II Hodgkin’s lymphoma patients: conventional radiotherapy, intensity-modulated radiotherapy, and three-dimensional proton radiotherapy. Int J Radiat Oncol Biol Phys 75:1173–1180.  https://doi.org/10.1016/j.ijrobp.2008.12.048 CrossRefPubMedGoogle Scholar
  6. 6.
    De Sanctis V, Bolzan C, Fanelli A et al (2012) Intensity modulated radiotherapy in early stage Hodgkin lymphoma patients: Is it better than three dimensional conformal radiotherapy?, S 1–9  https://doi.org/10.1186/1748-717X-7-129 Google Scholar
  7. 7.
    Eich HT, Diehl V, Görgen H et al (2010) Intensified chemotherapy and dose-reduced involved-field radiotherapy in patients with early unfavorable Hodgkin’s Lymphoma: final analysis of the German Hodgkin study group HD11 trial. J Clin Oncol 28:4199–4206.  https://doi.org/10.1200/JCO.2010.29.8018 CrossRefPubMedGoogle Scholar
  8. 8.
    Eich HT, Müller R‑P et al (2008) Involved-Node-Radiotherapie in frühen Stadien des Hodgkin-Lymphoms. Definition und Richtlinien der Deutschen Hodgkin-Lymphom-Studiengruppe (GHSG). Strahlenther Onkol 184:406–410.  https://doi.org/10.1007/s00066-008-1882-7 CrossRefPubMedGoogle Scholar
  9. 9.
    Engert A, Haverkamp H, Kobe C et al (2012) Articles Reduced-intensity chemotherapy and PET-guided radiotherapy in patients with advanced stage Hodgkin’s lymphoma (HD15 trial): a randomised, open-label, phase 3 non-inferiority trial. Lancet 379:1791–1799.  https://doi.org/10.1016/S0140-6736(11)61940-5 CrossRefPubMedGoogle Scholar
  10. 10.
    Engert A, Plütschow A, Eich HT et al (2010) Reduced treatment intensity in patients with early-stage Hodgkin’s Lymphoma. N Engl J Med 363:640–652.  https://doi.org/10.1056/NEJMoa1000067 CrossRefPubMedGoogle Scholar
  11. 11.
    Engert A, Schiller P, Josting A et al (2003) Involved-field radiotherapy is equally effective and less toxic compared with extended-field radiotherapy after four cycles of chemotherapy in patients with early-stage unfavorable Hodgkin„s lymphoma: results of the HD8 trial of the German Hodgkin“s Lymphoma Study Group. J Clin Oncol 21:3601–3608.  https://doi.org/10.1200/JCO.2003.03.023 CrossRefPubMedGoogle Scholar
  12. 12.
    Fiandra C, Filippi AR, Catuzzo P et al (2012) Different IMRT solutions vs. 3D-Conformal Radiotherapy in early stage Hodgkin’s lymphoma: dosimetric comparison and clinical considerations. Radiat Oncol 7:186.  https://doi.org/10.1186/1748-717X-7-186 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Filippi AR, Ciammella P, Piva C et al (2014) Involved-site image-guided intensity modulated versus 3D conformal radiation therapy in early stage supradiaphragmatic Hodgkin Lymphoma. Int J Radiat Oncol Biol Phys 89:370–375.  https://doi.org/10.1016/j.ijrobp.2014.01.041 CrossRefPubMedGoogle Scholar
  14. 14.
    Filippi AR, Ragona R, Piva C et al (2015) Optimized volumetric modulated arc therapy versus 3D-CRT for early stage mediastinal Hodgkin lymphoma without axillary involvement: a comparison of second cancers and heart disease risk. Int J Radiat Oncol Biol Phys 92:161–168.  https://doi.org/10.1016/j.ijrobp.2015.02.030 CrossRefPubMedGoogle Scholar
  15. 15.
    Girinsky T, van der Maazen R, Specht L et al (2006) Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. ESTRO 35, Turin, Italy, 29 April–3 May 2016, S 270–277  https://doi.org/10.1016/j.radonc.2006.05.015 Google Scholar
  16. 16.
    Hoppe BS, Flampouri S, Su Z et al (2012) Consolidative involved-node proton therapy for Stage IA-IIIB mediastinal Hodgkin lymphoma: preliminary dosimetric outcomes from a Phase II study. Int J Radiat Oncol Biol Phys 83:260–267.  https://doi.org/10.1016/j.ijrobp.2011.06.1959 CrossRefPubMedGoogle Scholar
  17. 17.
    Hoppe BS, Hill-Kayser CE, Tseng YD et al (2017) Consolidative proton therapy after chemotherapy for patients with Hodgkin lymphoma. Ann Oncol 28:2179–2184.  https://doi.org/10.1093/annonc/mdx287 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Horn S, Fournier-Bidoz N, Pernin V et al (2016) Comparison of passive-beam proton therapy, helical tomotherapy and 3D conformal radiation therapy in Hodgkin’s lymphoma female patients receiving involved-field or involved site radiation therapy. Cancer Radiother 20:98–103.  https://doi.org/10.1016/j.canrad.2015.11.002 CrossRefPubMedGoogle Scholar
  19. 19.
    Kriz J, Spickermann M, Lehrich P et al (2015) Atemanhaltetechnik in tiefer Inspiration bei konventioneller APPA oder intensitätsmodulierter Radiotherapie beim Hodgkin-Lymphom. Strahlenther Onkol 191:717–725.  https://doi.org/10.1007/s00066-015-0839-x CrossRefPubMedGoogle Scholar
  20. 20.
    Lu N‑N, Li Y‑X, Wu R‑Y et al (2012) Dosimetric and clinical outcomes of involved-field intensity-modulated radiotherapy after chemotherapy for early-stage Hodgkin’s lymphoma with mediastinal involvement. Int J Radiat Oncol Biol Phys 84:210–216.  https://doi.org/10.1016/j.ijrobp.2011.11.008 CrossRefPubMedGoogle Scholar
  21. 21.
    Maraldo MV, Brodin NP, Aznar MC et al (2013) Estimated risk of cardiovascular disease and secondary cancers with modern highly conformal radiotherapy for early-stage mediastinal Hodgkin lymphoma. Ann Oncol 24:2113–2118.  https://doi.org/10.1093/annonc/mdt156 CrossRefPubMedGoogle Scholar
  22. 22.
    Parikh RR, Grossbard ML, Harrison LB, Yahalom J (2016) Association of intensity-modulated radiation therapy on overall survival for patients with Hodgkin lymphoma. Radiother Oncol 118:52–59.  https://doi.org/10.1016/j.radonc.2015.10.022 CrossRefPubMedGoogle Scholar
  23. 23.
    Paumier A, Bakkour M, Ghalibafian M et al (2012) Involved-node radiotherapy combined with deep-inspiration breath-hold technique in patients with Hodgkin lymphoma. Cancer Radiother 16:85–90.  https://doi.org/10.1016/j.canrad.2011.07.245 CrossRefPubMedGoogle Scholar
  24. 24.
    Raemaekers JMM, André MPE, Federico M (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32:1188–1194.  https://doi.org/10.1200/JCO.2013.51.9298 CrossRefPubMedGoogle Scholar
  25. 25.
    Schneider U, Sumila M, Robotka J et al (2014) Radiation-induced second malignancies after involved-node radiotherapy with deep-inspiration breath-hold technique for early stage Hodgkin Lymphoma: a dosimetric study. Radiat Oncol 9:51.  https://doi.org/10.1186/1748-717X-9-58 CrossRefGoogle Scholar
  26. 26.
    Specht L, Yahalom J, Illidge T et al (2014) Modern Radiation Therapy for Hodgkin Lymphoma: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group (ILROG). Int J Radiat Oncol Biol Phys 89:854–862.  https://doi.org/10.1016/j.ijrobp.2013.05.005 CrossRefPubMedGoogle Scholar
  27. 27.
    von Tresckow B, Plütschow A, Fuchs M et al (2012) Dose-intensification in early unfavorable Hodgkin’s Lymphoma: final analysis of the German Hodgkin study group HD14 trial. J Clin Oncol 30:907–913.  https://doi.org/10.1200/JCO.2011.38.5807 CrossRefGoogle Scholar
  28. 28.
    Voong KR, McSpadden K, Pinnix CC et al (2014) Dosimetric advantages of a „butterfly“ technique for intensity-modulated radiation therapy for young female patients with mediastinal Hodgkin’s lymphoma. Radiat Oncol 9:94.  https://doi.org/10.1186/1748-717X-9-94 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Weber DC, Johanson S, Peguret N et al (2011) Predicted risk of radiation-induced cancers after involved field and involved node radiotherapy with or without intensity modulation for early-stage hodgkin lymphoma in female patients. Int J Radiat Oncol Biol Phys 81:490–497.  https://doi.org/10.1016/j.ijrobp.2010.05.035 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Christian Baues
    • 1
  • Johannes Rosenbrock
    • 1
  • Klaus Herfarth
    • 2
  • Peter Lukas
    • 3
  • Rita Engenhart-Cabillic
    • 4
  • Heinz Schmidtberger
    • 5
  • Simone Marntiz
    • 1
  • Hans Theodor Eich
    • 6
  1. 1.Klinik für Strahlentherapie und Cyberknife ZentrumUniklinik KölnKölnDeutschland
  2. 2.Klinik für StrahlentherapieUniklinik HeidelbergHeidelbergDeutschland
  3. 3.Klinik für StrahlentherapieUniklinik InnsbruckInnsbruckDeutschland
  4. 4.Klinik für StrahlentherapieUniklinik MarburgMarburgDeutschland
  5. 5.Klinik für StrahlentherapieUniklinik MainzMainzDeutschland
  6. 6.Klinik für Strahlentherapie und RadioonkologieUniklinik MünsterMünsterDeutschland

Personalised recommendations