Skip to main content
Log in

Adoptiver Immuntransfer und CAR-T-Zellen bei malignen Erkrankungen

Adoptive immune transfer and CAR T-cells in malignant diseases

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Die adoptive Zelltherapie (ACT) mit tumorinfiltrierenden Lymphozyten (TIL) ist eine wirkungsvolle Form der Krebsimmuntherapie. Ein alternativer hochwirksamer Ansatz ist die ACT mit gentechnisch veränderten T‑Zellen, die mit tumorspezifischen T‑Zell-Rezeptoren (TCR) oder chimären Antigenrezeptoren (CAR) ausgestattet sind. Im Gegensatz zu TCR erkennen CAR MHC-unabhängig ein breites Spektrum an extrazellulären Tumorantigenen.

Ziel

Dieser Übersichtsartikel stellt die aktuelle klinische Studienlage zur ACT mit einem besonderen Fokus auf die CAR-T-Zell-Therapie dar.

Ergebnisse

Die ACT mit TIL zeigt in klinischen Studien objektive Ansprechraten von bis zu 50 % bei Patienten mit einem fortgeschrittenen metastasierten malignen Melanom (mmM). 10–22 % dieser Patienten erreichen eine anhaltende komplette Remission. Trotz vielversprechender klinischer Daten ist die Herstellung einer therapeutischen Anzahl von tumorreaktiven TIL bis heute eine herausfordernde Hürde dieser Therapiestrategie. Die ACT mit TCR-modifizierten T‑Zellen führt bei Patienten mit mmM, Synovialsarkom und multiplem Myelom zu signifikanten klinischen Ansprechraten. Sie ist allerdings mit schweren Nebenwirkungen aufgrund von Kreuz- oder On-target-off-tumor-Reaktivitäten assoziiert. Die ACT mit CAR-modifizierten T‑Zellen zeigt in klinischen Studien beeindruckende Remissionsraten von bis zu 90 %, die hauptsächlich bei B‑Zell-Neoplasien erzielt werden. Bei soliden Tumoren ist dieser Ansatz bislang weniger erfolgreich. Auch die CAR-T-Zell-Therapie kann mit schweren Nebenwirkungen wie dem Zytokinfreisetzungssyndrom oder Neurotoxizität einhergehen. Die Verbesserung der Sicherheit und Effektivität von CAR-T-Zellen ist eine wesentliche wissenschaftliche Zielsetzung in der Weiterentwicklung dieser Therapieform.

Abstract

Background

Adoptive cell therapy (ACT) of tumor-infiltrating lymphocytes (TIL) is a potent form of immunotherapy. Genetic engineering of T‑cells with T‑cell receptor (TCR) or chimeric antigen receptor (CAR) targeting tumor antigens represents another powerful treatment approach for cancer immunotherapy. Unlike TCR, CAR can target a wide range of extracellular tumor antigens independently of major histocompatibility complex (MHC) molecules.

Objective

In this review the current status and future directions of ACT with a special focus on CAR T‑cell therapy are discussed.

Results

The application of TIL in ACT has induced objective response rates in up to 50% of advanced metastatic malignant melanoma patients, 10–22% of whom achieved a durable complete response. Despite promising clinical responses, the challenge in generating therapeutic numbers of tumor-reactive TILs within a short time remains the main hurdle in the development of a successful TIL therapy. The TCR-engineered T‑cells (TCR T‑cells) have demonstrated significant clinical responses in patients with metastatic melanoma, synovial sarcoma and multiple myeloma; however, TCR gene transfer can lead to fatal toxicity due to cross-reactivity or on-target-off-tumor toxicity. The CAR-engineered T‑cell (CAR T‑cell) clinical trials have shown impressive remission rates of up to 90% most notably in B‑cell neoplasms but clinical responses in solid tumors have been less encouraging. However, also CAR T‑cell therapy can be associated with severe side effects, such as cytokine release syndrome and neurotoxicity. Increasing the safety and efficacy of CAR T‑cells has become one of the major challenges to promote the development of this therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

ACT:

Adoptive Zelltherapie

AFP:

α-Fetoprotein

ALL:

Akute lymphatische Leukämie

BCMA:

B-Zell-Reifungsantigen

CAIX:

Carboanhydrase IX

CAR:

Chimärer Antigenrezeptor

CEA:

Karzinoembryonales Antigen

CLL:

Chronisch-lymphatische Leukämie

CR:

Vollständige Remission

CRS:

Zytokinfreisetzungssyndrom

EGFR:

Epidermaler Wachstumsfaktor-Rezeptor

EGFRvIII:

Epidermaler Wachstumsfaktor-Rezeptor Variante III

FDA:

US-amerikanische Arzneimittelzulassungsbehörde

GD2:

Disialogangliosid 2

gp100:

Glykoprotein 100

HER2 (ERBB2):

Humaner epidermaler Wachstumsfaktor 2

HPV:

Humanes Papillomavirus

IL-13Rα2:

Interleukin-13-Rezeptoruntereinheit α2

mAb:

Monoklonaler Antikörper

MAGE:

Melanomassoziiertes Antigen

MART-1:

„Melanoma antigen recognized by T cells 1“

MHC:

Haupthistokompatibilitätskomplex

MM:

Multiples Myelom

mmM:

Metastasiertes malignes Melanom

NHL:

Non-Hodgkin-Lymphom

NSCLC:

Nichtkleinzelliges Bronchialkarzinom

NY-ESO-1:

„Cancer/testis antigen 1“

OR:

Objektives Ansprechen

PSCA:

„Prostate stem cell antigen“

r/r:

Rezidiviert oder refraktär

TCR:

T-Zell-Rezeptor

TIL:

Tumorinfiltrierende Lymphozyten

WT-1:

„Wilms tumor susceptibility gene 1 protein“

Literatur

  1. Ahmed N, Brawley VS, Hegde M et al (2015) Human Epidermal Growth Factor Receptor 2 (HER2) – Specific chimeric antigen receptor-modified T cells for the immunotherapy of HER2-positive sarcoma. J Clin Oncol 33:1688–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brentjens RJ, Rivière I, Park JH et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B‑cell leukemias. Blood 118:4817–4828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T‑cell therapy. N Engl J Med 375:2561–2569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cameron BJ, Gerry AB, Dukes J et al (2013) Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med 5:197ra103

    Article  PubMed  Google Scholar 

  5. http://ClinicalTrials.gov (Juni 2017)

  6. Di Stasi A, Tey SK, Dotti G et al (2011) Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 365:1673–1683

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gardner R, Wu D, Cherian S et al (2016) Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B‑ALL from CD19 CAR-T-cell therapy. Blood 127:2406–2410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hegde M, Mukherjee M, Grada Z et al (2016) Tandem CAR T cells targeting HER2 and IL13Ralpha2 mitigate tumor antigen escape. J Clin Invest 126:3036–3052

    Article  PubMed  PubMed Central  Google Scholar 

  9. Johnson LA, Morgan RA, Dudley ME et al (2009) Gene therapy with human and mouse T‑cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114:535–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalos M, Levine BL, Porter DL et al (2011) T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med 3:95ra73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kuball J, Schmitz FW, Voss RH et al (2005) Cooperation of human tumor-reactive CD4+ and CD8+ T cells after redirection of their specificity by a high-affinity p53A2.1-specific TCR. Immunity 22:117–129

    Article  CAS  PubMed  Google Scholar 

  12. Lamers CH, Sleijfer S, van Steenbergen S et al (2013) Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther 21:904–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Louis CU, Savoldo B, Dotti G et al (2011) Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood 118:6050–6056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maude SL, Frey N, Shaw PA et al (2014) Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 371:1507–1517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGranahan N, Furness AJ, Rosenthal R et al (2016) Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–1469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Morgan RA (2013) Faster, cheaper, safer, T‑cell engineering. J Immunother 36:1–2

    Article  PubMed  PubMed Central  Google Scholar 

  17. Morgan RA, Dudley ME, Wunderlich JR et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morgan RA, Yang JC, Kitano M et al (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parkhurst MR, Yang JC, Langan RC et al (2011) T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther 19:620–626

    Article  CAS  PubMed  Google Scholar 

  20. Porter DL, Levine BL, Kalos M et al (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qasim W, Zhan H, Samarasinghe S et al (2017) Molecular remission of infant B‑ALL after infusion of universal TALEN gene-edited CAR T cells. Sci Transl Med 9(374). doi:10.1126/scitranslmed.aaj2013

    PubMed  Google Scholar 

  22. Rapoport AP, Stadtmauer EA, Binder-Scholl GK et al (2015) NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med 21:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Robbins PF (2017) Tumor-infiltrating lymphocyte therapy and neoantigens. Cancer J 23:138–143

    Article  CAS  PubMed  Google Scholar 

  24. Robbins PF, Morgan RA, Feldman SA et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29:917–924

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rosenberg SA, Packard BS, Aebersold PM et al (1988) Use of tumor-infiltrating lymphocytes and Interleukin-2 in the immunotherapy of patients with metastatic melanoma. N Engl J Med 319:1676–1680

    Article  CAS  PubMed  Google Scholar 

  26. Rosenberg SA, Yang JC, Sherry RM et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T‑cell transfer immunotherapy. Clin Cancer Res 17:4550–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stanislawski T, Voss RH, Lotz C et al (2001) Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2:962–970

    Article  CAS  PubMed  Google Scholar 

  28. Tran E, Robbins PF, Lu YC et al (2016) T‑cell transfer therapy targeting mutant KRAS in cancer. N Engl J Med 375:2255–2262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tran E, Turcotte S, Gros A et al (2014) Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344:641–645

    Article  CAS  PubMed  Google Scholar 

  30. Turtle CJ, Hanafi LA, Berger C et al (2016) Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci Transl Med 8:355ra116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yu S, Li A, Liu Q et al (2017) Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol 10:78

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Theobald.

Ethics declarations

Interessenkonflikt

H. Echchannaoui, K. Dietrich und M. Theobald geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echchannaoui, H., Dietrich, K. & Theobald, M. Adoptiver Immuntransfer und CAR-T-Zellen bei malignen Erkrankungen. Onkologe 23, 815–822 (2017). https://doi.org/10.1007/s00761-017-0274-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-017-0274-y

Schlüsselwörter

Keywords

Navigation