Advertisement

Der Onkologe

, Volume 23, Issue 10, pp 831–837 | Cite as

Immuntherapien bei Gliomen

  • Katharina Ochs
  • Lukas Bunse
  • Iris Mildenberger
  • Wolfgang Wick
  • Michael Platten
Leitthema
  • 243 Downloads

Zusammenfassung

Hintergrund

Immuntherapeutische Behandlungsansätze für Gliome mit dem Ziel, einerseits gegen den Tumor gerichtete Immunantworten zu stärken und andererseits dem immunsuppressiven Tumormikromilieu entgegenzuwirken, werden seit Jahrzehnten in präklinischen und klinischen Studien untersucht, ohne dass es bisher eine zugelassene Immuntherapie für die Behandlung von primären Hirntumoren gibt. Dennoch erfährt die Neuroonkoimmunologie aktuell sowohl aufgrund neuer diagnostischer Möglichkeiten und zielgerichteter Therapieoptionen als auch aufgrund erfolgsversprechender Ergebnisse bei systemischen Tumoren ein gesteigertes Interesse.

Ziel

Dieser Artikel gibt einen Überblick über aktuelle Konzepte zur Immuntherapie bei Gliomen und fasst bisherige Studienergebnisse zusammen.

Ergebnisse

Während erste klinische Erfahrungen zum Einsatz von Immuncheckpointinhibitoren bei Gliomen keine grundlegenden Sicherheitsbedenken ergaben, scheint auf Grundlage der bisherigen Studienergebnisse die Wirksamkeit zumindest einer Monotherapie in nicht selektierten Patientenpopulationen bei malignen Gliomen begrenzt zu sein. Klinische Ergebnisse zu Kombinationsbehandlungen, beispielsweise mit T‑Zell-basierten Therapieansätzen wie antigenspezifischen Vakzinierungen, stehen aus. Diese nutzen meist Peptidimpfstoffe, die gegen Tumorantigene gerichtet sind, um eine möglichst effektive und gleichzeitig spezifische Antitumorimmunantwort zu generieren. Neben Impfstoffen gegen individuell variable Antigene eignen sich insbesondere rekurrente Neoepitope wie eine in Glioblastomen vorkommenden Splicevariante des epidermalen Wachstumsfaktors (EGFRvIII) oder eine in diffusen Gliomen vorkommende Punktmutation im Gen der Isocitratdehydrogenase-1 (IDH1R132H) als Vakzinierungsziel.

Schlüsselwörter

Glioblastom Immuncheckpointinhibitor Neoepitop EGFRvIII IDH1R132H-Vakzin 

Glioma immunotherapy

Abstract

Background

Immunotherapeutic approaches for treatment of malignant gliomas aim at inducing effective anti-tumor immune responses while counteracting the immunosuppressive tumor microenvironment. Despite extensive preclinical and clinical research during the last decades, there are currently no approved immunotherapeutic drugs for primary brain tumors; however, neuro-oncoimmunology is currently experiencing major interest due to new diagnostic and targeted therapy options as well as due to promising results in systemic tumors.

Objective

This article provides an overview of current concepts for glioma immunotherapy and summarizes the results of available clinical trials.

Results

While first clinical experiences with the administration of immune checkpoint inhibitors for gliomas did not raise any safety concerns, the efficacy of immune checkpoint monotherapy for malignant gliomas appears to be limited in an unselected patient population. Clinical results on combination treatment, such as T cell-based therapy approaches with antigen-specific vaccinations are pending. This involves mostly peptide vaccines that are directed against tumor antigens in order to generate an effective and at the same time specific anti-tumor immune response. In addition to vaccines against individually variable antigens, recurrent neoepitopes are particularly suitable as a target of vaccination, such as a splice variant of the epidermal growth factor (EGFRvIII) occurring in glioblastomas and a point mutation occurring in diffuse gliomas in the gene of isocitrate dehydrogenase-1 (IDH1R132H).

Keywords

Glioblastoma Immune checkpoint inhibitor Neoepitope EGFRvIII IDH1R132H vaccine 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Bunse, W. Wick und M. Platten sind Inhaber zweier Patente zur IDH1-Vakzinierung. K. Ochs und I. Mildenberger geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ahmed N, Brawley V, Hegde M et al (2017) HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. doi: 10.1001/jamaoncol.2017.0184 Google Scholar
  2. 2.
    Ajithkumar T, Parkinson C, Fife K et al (2015) Evolving treatment options for melanoma brain metastases. Lancet Oncol 16:e486–497CrossRefPubMedGoogle Scholar
  3. 3.
    Bloch O, Crane CA, Fuks Y et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology 16:274–279CrossRefPubMedGoogle Scholar
  4. 4.
    Bogdahn U, Hau P, Stockhammer G et al (2011) Targeted therapy for high-grade glioma with the TGF-beta2 inhibitor trabedersen: results of a randomized and controlled phase IIb study. Neuro-Oncology 13:132–142CrossRefPubMedGoogle Scholar
  5. 5.
    Bouffet E, Larouche V, Campbell BB et al (2016) Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol 34:2206–2211CrossRefPubMedGoogle Scholar
  6. 6.
    Brandes AA, Carpentier AF, Kesari S et al (2016) A Phase II randomized study of galunisertib monotherapy or galunisertib plus lomustine compared with lomustine monotherapy in patients with recurrent glioblastoma. Neuro-Oncology 18:1146–1156CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Brown CE, Alizadeh D, Starr R et al (2016) Regression of glioblastoma after chimeric antigen receptor T‑cell therapy. N Engl J Med 375:2561–2569CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Bunse L, Schumacher T, Sahm F et al (2015) Proximity ligation assay evaluates IDH1R132H presentation in gliomas. J Clin Invest 125:593–606PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dutoit V, Herold-Mende C, Hilf N et al (2012) Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain 135:1042–1054CrossRefPubMedGoogle Scholar
  10. 10.
    Hartmann C, Meyer J, Balss J et al (2009) Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol 118:469–474CrossRefPubMedGoogle Scholar
  11. 11.
    Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Johanns TM, Miller CA, Dorward IG et al (2016) Immunogenomics of hypermutated glioblastoma: a patient with germline POLE deficiency treated with checkpoint blockade immunotherapy. Cancer Discov 6:1230–1236CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson BE, Mazor T, Hong C et al (2014) Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343:189–193CrossRefPubMedGoogle Scholar
  14. 14.
    Johnson LA, Scholler J, Ohkuri T et al (2015) Rational development and characterization of humanized anti-EGFR variant III chimeric antigen receptor T cells for glioblastoma. Sci Transl Med 7:275ra222CrossRefGoogle Scholar
  15. 15.
    Keu KV, Witney TH, Yaghoubi S et al (2017) Reporter gene imaging of targeted T cell immunotherapy in recurrent glioma. Sci Transl Med 9(373):eaag2196. doi: 10.1126/scitranslmed.aag2196 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mitchell DA, Batich KA, Gunn MD et al (2015) Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 519:366–369CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ochs K, Ott M, Bunse T et al (2017) K27M-mutant Histone-3 as novel target for glioma immunotherapy. Oncoimmunology (Accepted for publication). doi: 10.1080/2162402X.2017.1328340 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Opitz CA, Litzenburger UM, Sahm F et al (2011) An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203CrossRefPubMedGoogle Scholar
  19. 19.
    Pellegatta S, Valletta L, Corbetta C et al (2015) Effective immuno-targeting of the IDH1 mutation R132H in a murine model of intracranial glioma. Acta Neuropathol Commun 3:4CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Platten M, Offringa R (2015) Cancer immunotherapy: exploiting neoepitopes. Cell Res 25:887–888CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rajasagi M, Shukla SA, Fritsch EF et al (2014) Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124:453–462CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Reardon DA, Gokhale PC, Klein SR et al (2016) Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res 4:124–135CrossRefPubMedGoogle Scholar
  23. 23.
    Reardon DA, Omuro A, Brandes AA et al (2017) Randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: checkmate 143. Neuro-Oncology 19(Suppl 3):iii21CrossRefGoogle Scholar
  24. 24.
    Reardon DA, Sampson JH, Sahebjam S et al (2016) Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol 34:2014. doi: 10.1200/jco.2016.34.15_suppl.2014 Google Scholar
  25. 25.
    Reardon DA, Schuster J, Tran DD et al (2015) ReACT: overall survival from a randomized phase II study of rindopepimut (CDX-110) plus bevacizumab in relapsed glioblastoma. J Clin Oncol 33:2009. doi: 10.1200/jco.2015.33.15_suppl.2009 Google Scholar
  26. 26.
    Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sampson JH, Heimberger AB, Archer GE et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 28:4722–4729CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sampson JH, Vlahovic G, Sahebjam S et al (2015) Preliminary safety and activity of nivolumab and its combination with ipilimumab in recurrent glioblastoma (GBM): CHECKMATE-143. J Clin Oncol 33:3010. doi: 10.1200/jco.2015.33.15_suppl.3010 Google Scholar
  29. 29.
    Schumacher T, Bunse L, Pusch S et al (2014) A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512:324–327CrossRefPubMedGoogle Scholar
  30. 30.
    Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74CrossRefPubMedGoogle Scholar
  31. 31.
    Schuster J, Lai RK, Recht LD et al (2015) A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology 17:854–861CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Topalian SL, Hodi FS, Brahmer JR et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Turcan S, Rohle D, Goenka A et al (2012) IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483:479–483CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Van Thuijl HF, Mazor T, Johnson BE et al (2015) Evolution of DNA repair defects during malignant progression of low-grade gliomas after temozolomide treatment. Acta Neuropathol 129:597–607CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Weller M, Butowski NA, Tran DD et al (2017) ACT IV: an international, double-blind, phase 3 trial of rindopepimut in newly diagnosed, EGFRvIII-expressing glioblastoma. Neuro-Oncology 19(Suppl 3):iii22CrossRefGoogle Scholar
  36. 36.
    Wen PY, Reardon DA, Phuphanich S et al (2014) A randomized, double-blind, placebo-controlled phase 2 trial of dendritic cell (DC) vaccination with ICT-107 in newly diagnosed glioblastoma (GBM) patients. J Clin Oncol 32:5sGoogle Scholar
  37. 37.
    Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zhang C, Burger MC, Jennewein L et al (2016) ErbB2/HER2-specific NK cells for targeted therapy of glioblastoma. J Natl Cancer Inst. doi: 10.1093/jnci/djv375 Google Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  1. 1.Neurologische Universitätsklinik Heidelberg und Nationales Zentrum für TumorerkrankungenUniversitätsklinikum HeidelbergHeidelbergDeutschland
  2. 2.Klinische Kooperationseinheit Neuroimmunologie und HirntumorimmunologieDeutsches Krebsforschungszentrum HeidelbergHeidelbergDeutschland
  3. 3.Neurologische Universitätsklinik MannheimUniversitätsmedizin Mannheim, Universität HeidelbergMannheimDeutschland

Personalised recommendations