Skip to main content

Advertisement

Log in

Grundlagen der malignen Transformation

Principles of malignant transformation

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund und Ziel

Der Einzug molekularer Diagnostik in den klinisch-onkologischen Alltag und die Therapieentscheidungen anhand onkogenetischer Befunde erfordern ein Grundverständnis molekularer Mechanismen der Tumorigenese. Der folgende Beitrag soll in vereinfachter Form die Grundlagen der malignen Transformation beschreiben und Begriffe wie Onkogen oder Tumorsuppressorgen erläutern.

Methoden

Recherche und Auswertung aktueller Literatur.

Ergebnisse

In der Karzinogenese werden drei Arten von Mutationen unterschieden, die zu einer malignen Transformation einer Zelle führen können: Mutationen in Onkogenen, in Tumorsuppressorgenen sowie in Stabilitätsgenen. Ein Tumor entsteht jedoch in der Regel nicht durch eine einzige Mutation eines bestimmten Gens. Eine Zelle entartet erst, wenn mehrere Gene mutiert sind. Onkogene sind Gene, die aus Protoonkogenen durch Mutation hervorgehen und den Übergang einer normalen Zelle in eine maligne Zelle, meist durch Steigerung der Proliferationsrate, fördern. Tumorsuppressorgene sind meistens Gene, die in einer die Zelle gefährdenden Situation einen Zell-Zyklus-Arrest initiieren oder proapoptotische Eigenschaften haben und somit die maligne Entartung verhindern sollen. Mutiert ein solches Gen jedoch, kann genau das Gegenteil eintreten: Reduziert die Mutation die Aktivität des Genprodukts, kann die Entstehung eines malignen Tumors begünstigt werden. Die dritte Klasse von Mutationen, die zu einer malignen Entartung beitragen, können unter dem Begriff der Stabilitätsgenmutationen zusammengefasst werden.

Die Krebsforschung der letzten Jahrzehnte hat erkannt, dass es trotz der Vielzahl von Protoonkogenen/Onkogenen und Tumorsuppressorgenen nur eine überschaubare Zahl von an der Onkogenese beteiligten Signalkaskaden gibt. Klinische Relevanz hat diese Information insofern, da die experimentelle Abschaltung von verschiedenen Genen desselben Pathways im Tierexperiment zum gleichen Phänotyp geführt hat und sich dieses Konzept auch auf die Onkologie anwenden lässt. Die Krebsforscher Douglas Hanahan und Robert Weinberg haben 10 Eigenschaften definiert, die jede Krebszelle benötigt, um eine invasive und tödliche Krebserkrankung auslösen zu können (sog. Hallmarks of Cancer).

Abstract

Background and objective

The inclusion of molecular diagnostics in the clinical oncological routine and the therapeutic decision-making based on oncogenetic results necessitate a basic understanding of the molecular mechanisms of tumorigenesis. This article describes the principles of malignant transformation in a simplified form and elucidates terms such as “oncogene” and tumor-suppressor gene”.

Methods

A database search and evalution of the current literature were carried out.

Results

In carcinogenesis three forms of mutations can be differentiated, which can lead to malignant transformation of cells: mutations in oncogenes, mutations in tumor-suppressor genes and in stability genes; however, a tumor does not as a rule arise from a single mutation of a certain gene. A cell only degenerates when several genes are mutated. Oncogenes are genes which arise from proto-oncogenes by mutation and promote the transformation of a normal cell to a malignant cell, mostly by increasing the proliferation rate. Tumor-suppressor genes are mostly genes that, in a jeopardizing situation for the cell, initiate a cell cycle arrest or have proapoptotic features and should, therefore, prevent malignant degeneration; however, if such a gene mutates, exactly the opposite can occur. If the mutation reduces the activity of the gene product, this can favor the formation of a malignant tumor. The third class of mutations, which contribute to malignant degeneration can be summarized under the term stability (caretaker) gene mutations.

Over the last decade cancer research has revealed that despite the multitude of proto-oncogenes, oncogenes and tumor-suppressor genes, only a manageable number of signal cascades are involved in oncogenesis. This information is of clinical relevance to the extent that in animal experiments the switching off of various genes in the same pathway led to the same phenotype and this concept can also be utilized in oncology. The cancer researchers Douglas Hanahan and Robert Weinberg have defined 10 characteristic features that every cancer cell needs in order to initiate an invasive and fatal cancerous disease (so-called hallmarks of cancer).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. http://cancergenome.nih.gov/

  2. Barras D (2015) BRAF mutation in colorectal cancer: an update. Biomark Cancer 7:9–12

    Article  PubMed  PubMed Central  Google Scholar 

  3. Classon M, Harlow E (2002) The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2:910–917

    Article  PubMed  CAS  Google Scholar 

  4. Denko NC (2008) Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8:705–713

    Article  PubMed  CAS  Google Scholar 

  5. Fishel R (2015) Mismatch Repair. J Biol Chem 290:26395–26403

    Article  PubMed  CAS  Google Scholar 

  6. Gunes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152:390–393

    Article  PubMed  Google Scholar 

  7. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  PubMed  CAS  Google Scholar 

  8. Horvitz HR (2003) Worms, life, and death (Nobel lecture). Chembiochem 4:697–711

    Article  PubMed  CAS  Google Scholar 

  9. Ichimura K, Bolin MB, Goike HM et al (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    PubMed  CAS  Google Scholar 

  10. Klein G (2002) Perspectives in studies of human tumor viruses. Front Biosci 7:d268–d274

    Article  PubMed  CAS  Google Scholar 

  11. Knudson AG (2002) Cancer genetics. Am J Med Genet 111:96–102

    Article  PubMed  Google Scholar 

  12. Komarova NL, Sengupta A, Nowak MA (2003) Mutation-selection networks of cancer initiation: tumor suppressor genes and chromosomal instability. J Theor Biol 223:433–450

    Article  PubMed  CAS  Google Scholar 

  13. Kunkel TA, Erie DA (2015) Eukaryotic mismatch repair in relation to DNA replication. Annu Rev Genet

  14. Lawrence MS, Stojanov P, Polak P et al (2013) Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Maley CC, Galipeau PC, Li X et al (2004) Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res 64:3414–3427

    Article  PubMed  CAS  Google Scholar 

  16. Martincorena I, Campbell PJ (2015) Somatic mutation in cancer and normal cells. Science 349:1483–1489

    Article  PubMed  CAS  Google Scholar 

  17. Munger K, Howley PM (2002) Human papillomavirus immortalization and transformation functions. Virus Res 89:213–228

    Article  PubMed  CAS  Google Scholar 

  18. Nowell PC (2002) Tumor progression: a brief historical perspective. Semin Cancer Biol 12:261–266

    Article  PubMed  CAS  Google Scholar 

  19. Oren M (2003) Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442

    Article  PubMed  CAS  Google Scholar 

  20. Ortega S, Malumbres M, Barbacid M (2002) Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602:73–87

    PubMed  CAS  Google Scholar 

  21. Prives C, Hall PA et al (1999) The p53 pathway. J Pathol 187:112–126

    Article  PubMed  CAS  Google Scholar 

  22. Ruttkay-Nedecky B, Jimenez Jimenez AM, Nejdl L et al (2013) Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 43:1754–1762

    PubMed  CAS  Google Scholar 

  23. Santarosa M, Ashworth A (2004) Haploinsufficiency for tumour suppressor genes: when you don’t need to go all the way. Biochim Biophys Acta 1654:105–122

    PubMed  CAS  Google Scholar 

  24. Sewastianik T, Prochorec-Sobieszek M, Chapuy B, Juszczynski P (2014) MYC deregulation in lymphoid tumors: molecular mechanisms, clinical consequences and therapeutic implications. Biochim Biophys Acta 1846:457–467

    PubMed  CAS  Google Scholar 

  25. Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60:3689–3695

    PubMed  CAS  Google Scholar 

  26. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90:1–50

    Article  PubMed  CAS  Google Scholar 

  27. Van Dyke T, Jacks T (2002) Cancer modeling in the modern era: progress and challenges. Cell 108:135–144

    Article  Google Scholar 

  28. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033

    Article  Google Scholar 

  29. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  30. Vogelstein B, Kinzler KW (2015) The path to cancer – three strikes and you’re out. N Engl J Med 373:1895–1898

    Article  PubMed  Google Scholar 

  31. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  PubMed  CAS  Google Scholar 

  32. Vogelstein B, Papadopoulos N, Velculescu VE et al (2013) Cancer genome landscapes. Science 339:1546–1558

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Walz S, Lorenzin F, Morton J et al (2014) Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 511:483–487

    Article  PubMed  CAS  Google Scholar 

  34. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  PubMed  CAS  Google Scholar 

  35. Weinberg RA (2007) The Biology of Cancer

  36. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27:5904–5912

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Zender L, Xue W, Zuber J et al (2008) An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135:852–864

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. zur Hausen H (2001) Oncogenic DNA viruses. Oncogene 20:7820–7823

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. N.P. Malek, C. Klein und L. Zender geben an, dass kein Interessenkonflikt besteht.

Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N.P. Malek M.D..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klein, C., Zender, L. & Malek, N. Grundlagen der malignen Transformation. Onkologe 22, 5–12 (2016). https://doi.org/10.1007/s00761-015-2994-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-015-2994-1

Schlüsselwörter

Keywords

Navigation