Skip to main content
Log in

Individuelle Dosimetrie bei der Radiojodtherapie

Individual dosimetry in radioiodine therapy

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Die Radiojodtherapie mit radioaktivem 131Iod ist ein wichtiger Baustein in der Behandlung von Patienten mit maligner Erkrankung der Schilddrüse. Dabei ist eine individuelle Dosimetrie sowohl unter Therapie zur Erfassung der damit verbundenen Dosen wie auch bei bestimmten Patienten prätherapeutisch zur Festlegung der zu verabreichenden Aktivitäten sinnvoll.

Ergebnisse

Für die dabei anwendbaren Verfahren und Berechnungen existieren nationale und internationale Leitlinien, die aber nach wie vor dem behandelnden Arzt weitgehend Freiheit bezüglich der Bewertung der Ergebnisse und der therapeutischen Konsequenzen lassen. Der aktuelle Beitrag gibt eine Übersicht über die Grundideen und Methoden der Dosimetrie und eine Einschätzung, wie die Dosimetrie bei der Radiojodtherapie die Behandlung des Schilddrüsenkarzinoms beeinflussen kann.

Schlussfolgerung

Da bisher kaum prospektive, randomisierte Studien zur Therapieoptimierung existieren, ist derzeit eine zwingende medizinische Notwendigkeit zur Durchführung individueller Dosimetrien nicht nachweisbar. Von einer individuellen Dosimetrie könnten allerdings Patienten profitieren, für die die Standardaktivitäten nicht ausreichen, für die die durch die Blutdosimetrie erreichbaren Dosen im Zielgewebe erhöht werden könnten, und für diejenigen Patienten, bei denen weitere Radiojodtherapien nicht mehr sinnvoll erscheinen.

Abstract

Background

Radioiodine therapy with iodine I-131 is an important component in the treatment of patients with malignant diseases of the thyroid gland. For this treatment an individual dosimetry is useful after therapy for assessing the absorbed doses achieved and for selected patients prior to treatment, to determine the activity to be administered.

Results

For these procedures there are national and international guidelines, which largely leave the treating physician with a great deal of freedom regarding the evaluation of the results and therapeutic consequences. The current article provides an overview of the basic concepts and methods of nuclear medicine dosimetry and assesses how dosimetry applied to radioiodine therapy may affect the radioiodine treatment of thyroid cancer.

Conclusion

As there are currently no prospective randomized studies on treatment optimization there is no medical need to implement individual dosimetry; however, patients who could benefit from an individual dosimetry are those for whom the standard activities are insufficient, those for whom the achievable doses to target tissues can be increased by blood-based dosimetry and those patients for whom more radioiodine therapy no longer make sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Benua RS, Cicale NR, Sonenberg M et al (1962) The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med 87:171–182

    CAS  PubMed  Google Scholar 

  2. Chiesa C, Castellani MR, Vellani C et al (2009) Individualized dosimetry in the management of metastatic differentiated thyroid cancer. Q J Nucl Med Mol Imaging 53:546–561

    CAS  PubMed  Google Scholar 

  3. Cooper DS, Doherty GM, Haugen BR et al (2009) Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19:1167–1214

    Article  PubMed  Google Scholar 

  4. De Keizer B, Brans B, Hoekstra A et al (2003) Tumour dosimetry and response in patients with metastatic differentiated thyroid cancer using recombinant human thyrotropin before radioiodine therapy. Eur J Nucl Med Mol Imaging 30:367–373

    Article  Google Scholar 

  5. Dewaraja YK, Frey EC, Sgouros G et al (2012) MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 53:1310–1325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Dewaraja YK, Ljungberg M, Green AJ et al (2013) MIRD pamphlet No. 24: guidelines for quantitative 131I SPECT in dosimetry applications. J Nucl Med 54:2182–2188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Dietlein M, Dressler J, Eschner W et al (2007) Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 3). Nuklearmedizin 46:213–219

    CAS  PubMed  Google Scholar 

  8. Dorn R, Kopp J, Vogt H et al (2003) Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med 44:451–456

    CAS  PubMed  Google Scholar 

  9. Flux GD, Haq M, Chittenden SJ et al (2010) A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 37:270–275

    Article  CAS  PubMed  Google Scholar 

  10. Hänscheid H, Lassmann M, Luster M et al (2009) Blood dosimetry from a single measurement of the whole body radioiodine retention in patients with differentiated thyroid carcinoma. Endocr Relat Cancer 16:1283–1289

    Article  PubMed  Google Scholar 

  11. Hänscheid H, Lassmann M, Luster M et al (2006) Iodine biokinetics and dosimetry in radioiodine therapy of thyroid cancer: procedures and results of a prospective international controlled study of ablation after rhTSH or hormone withdrawal. J Nucl Med 47:648–654

    PubMed  Google Scholar 

  12. Jentzen W, Hoppenbrouwers J, Van Leeuwen P et al (2014) Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med 55:1759–1765

    Article  CAS  PubMed  Google Scholar 

  13. Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F et al (2011) Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 96:3217–3225

    Article  CAS  PubMed  Google Scholar 

  14. Kolbert KS, Pentlow KS, Pearson JR et al (2007) Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124I PET and 3-dimensional internal dosimetry software. J Nucl Med 48:143–149

    CAS  PubMed  Google Scholar 

  15. Kulkarni K, Van Nostrand D, Atkins F et al (2006) The relative frequency in which empiric dosages of radioiodine would potentially overtreat or undertreat patients who have metastatic well-differentiated thyroid cancer. Thyroid 16:1019–1023

    Article  CAS  PubMed  Google Scholar 

  16. Lassmann M, Hänscheid H, Chiesa C et al (2008) EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur J Nucl Med Mol Imaging 35:1405–1412

    Article  PubMed  Google Scholar 

  17. Lassmann M, Luster M, Hänscheid H et al (2004) Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. J Nucl Med 45:619–625

    PubMed  Google Scholar 

  18. Lee JJ, Chung JK, Kim SE et al (2008) Maximal safe dose of I-131 after failure of standard fixed dose therapy in patients with differentiated thyroid carcinoma. Ann Nucl Med 22:727–734

    Article  PubMed  Google Scholar 

  19. Luster M, Clarke SE, Dietlein M et al (2008) Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 35:1941–1959

    Article  CAS  PubMed  Google Scholar 

  20. Maxon HR III, Smith HS (1990) Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 19:685–718

    PubMed  Google Scholar 

  21. Maxon HR, Thomas SR, Hertzberg VS et al (1983) Relation between effective radiation dose and outcome of radioiodine therapy for thyroid cancer. N Engl J Med 309:937–941

    Article  CAS  PubMed  Google Scholar 

  22. Menzel C, Grunwald F, Schomburg A et al (1996) „High-dose“ radioiodine therapy in advanced differentiated thyroid carcinoma. J Nucl Med 37:1496–1503

    CAS  PubMed  Google Scholar 

  23. Pacini F, Ladenson PW, Schlumberger M et al (2006) Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 91:926–932

    Article  CAS  PubMed  Google Scholar 

  24. Pacini F, Schlumberger M, Dralle H et al (2006) European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur J Endocrinol 154:787–803

    Article  CAS  PubMed  Google Scholar 

  25. Remy H, Borget I, Leboulleux S et al (2008) 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med 49:1445–1450

    Article  CAS  PubMed  Google Scholar 

  26. Sgouros G, Kolbert KS, Sheikh A et al (2004) Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 45:1366–1372

    CAS  PubMed  Google Scholar 

  27. Siegel JA, Thomas SR, Stubbs JB et al (1999) MIRD pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40:37S–61S

    CAS  PubMed  Google Scholar 

  28. Tuttle RM, Leboeuf R, Robbins RJ et al (2006) Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J Nucl Med 47:1587–1591

    PubMed  Google Scholar 

  29. Verburg FA, Biko J, Diessl S et al (2011) I-131 activities as high as safely administrable (AHASA) for the treatment of children and adolescents with advanced differentiated thyroid cancer. J Clin Endocrinol Metab 96:E1268–E1271

    Article  CAS  PubMed  Google Scholar 

  30. Verburg FA, Hanscheid H, Biko J et al (2010) Dosimetry-guided high-activity 131I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging 37:896–903

    Article  PubMed  Google Scholar 

  31. Verburg FA, Lassmann M, Mader U et al (2011) The absorbed dose to the blood is a better predictor of ablation success than the administered 131I activity in thyroid cancer patients. Eur J Nucl Med Mol Imaging 38:673–680

    Article  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. M. Lassmann und H. Hänscheid geben an, dass kein Interessenkonflikt besteht.

Der Beitrag enthält keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lassmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lassmann, M., Hänscheid, H. Individuelle Dosimetrie bei der Radiojodtherapie. Onkologe 21, 611–616 (2015). https://doi.org/10.1007/s00761-014-2860-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-014-2860-6

Schlüsselwörter

Keywords

Navigation