Skip to main content
Log in

Potenzial radiologischer und nuklearmedizinischer Funktionsdiagnostik

Gezielte Anwendung im onkologischen Therapiemonitoring

Potential of radiological and functional imaging modalities in oncological therapy monitoring

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Morphologiebasierte Methoden zum Therapiemonitoring (RECIST-Kriterien) haben insbesondere mit der zunehmenden Anwendung neuer molekularer Krebstherapien eine begrenzte Aussagekraft.

Ziel

Ziel ist die Evaluation des Potenzials von modernen funktionellen radiologischen und nuklearmedizinischen Bildgebungsmodalitäten wie Perfusions- und Dual-Energy-CT, dynamische Perfusions- und Diffusions-MRT sowie Hybridbildgebung (PET-CT, PET-MRT) für die Beurteilung des Therapieansprechens onkologischer Erkrankungen.

Material und Methoden

Es erfolgte eine selektive Literaturrecherche in der Datenbank PubMed und eine Auswertung eigener Patienten zum Einsatz funktioneller Bildgebung im onkologischen Therapiemonitoring.

Ergebnisse

Die Volumen-Perfusions-CT und die dynamische MRT erfassen die Tumormikrozirkulation, welche sich bereits frühzeitig unter antiangiogenetischer Therapie verändert. Unterschiedliche Gewebezusammensetzungen und die Jodaufnahme in Tumoren können mit der Dual-Energy-CT dargestellt werden, Veränderungen der Tumorzelldichte unter Therapie mit der diffusionsgewichteten MRT. Die PET-CT ist im Therapiemonitoring vieler Tumoren bereits etabliert und ermöglicht die kombinierte Darstellung von Morphologie und Metabolismus der Tumoren.

Schlussfolgerungen

Moderne funktionelle Bildgebungsmethoden besitzen ein großes Potenzial zur verbesserten Tumorcharakterisierung und genaueren und früheren Therapieevaluation über morphologische Veränderungen hinaus. Für ihren routinemäßigen Einsatz ist allerdings häufig noch eine Validierung in größeren Patientenkollektiven und eine Standardisierung bezüglich der Untersuchungsabläufe und Bewertungskriterien sowie z. T. der Auswertemethoden erforderlich.

Abstract

Background

Morphology-based methods for therapy monitoring, such as the response evaluation criteria in solid tumors (RECIST), have shortcomings in oncological therapy evaluation especially of new molecular therapies.

Objectives

Evaluation of the potential of modern functional imaging modalities, including volume perfusion computed tomography (CT), dual energy CT, dynamic contrast-enhanced magnetic resonance imaging (MRI), diffusion-weighted imaging and hybrid imaging, such as positron emission tomography (PET) CT and PET-MRI for therapy monitoring of oncological diseases.

Material and methods

The results of a selective Pubmed search and an evaluation of own analyses regarding the use of functional imaging in therapy evaluation of oncological diseases are presented.

Results

Early changes of tumor perfusion under antiangiogenetic therapy can be measured by volume perfusion CT and dynamic contrast-enhanced MRI. Different chemical tissue compositions and the maximum iodine uptake can be assessed by dual energy-CT. On the other hand, PET-CT is an established hybrid modality for therapy evaluation and provides information about morphology and tumor metabolism. Diffusion-weighted MRI enables the measurement of the higher cellularity in tumor lesions and the changes under therapy.

Conclusion

The new functional imaging modalities have a great potential to improve characterization of tumors and enable an earlier and more precise therapy evaluation of oncological diseases beyond morphological changes; however, validation in larger patient cohorts and standardization concerning examination techniques and interpretation criteria as well as postprocessing are still needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Afshar-Oromieh A, Zechmann CM, Malcher A et al (2014) Comparison of PET imaging with a (68)Ga-labelled PSMA ligand and (18)F-choline-based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging 41:11–20

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Braunagel M, Graser A, Reiser M et al (2014) The role of functional imaging in the era of targeted therapy of renal cell carcinoma. World J Urol 32:47–58

    Article  CAS  PubMed  Google Scholar 

  3. Chae EJ, Song JW, Seo JB et al (2008) Clinical utility of dual-energy CT in the evaluation of solitary pulmonary nodules: initial experience. Radiology 249:671–681

    Article  PubMed  Google Scholar 

  4. Choi H, Charnsangavej C, Faria SC et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    Article  PubMed  Google Scholar 

  5. Dai X, Schlemmer HP, Schmidt B et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82:327–334

    Article  PubMed  Google Scholar 

  6. Dehdashti F, Mortimer JE, Trinkaus K et al (2009) PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer. Breast Cancer Res Treat 113:509–517

    Article  CAS  PubMed  Google Scholar 

  7. Devries AF, Piringer G, Kremser C et al (2014) Pretreatment evaluation of microcirculation by dynamic contrast-enhanced magnetic resonance imaging predicts survival in primary rectal cancer patients. Int J Radiat Oncol Biol Phys

  8. Eschmann SM, Friedel G, Paulsen F et al (2007) Repeat 18F-FDG PET for monitoring neoadjuvant chemotherapy in patients with stage III non-small cell lung cancer. Lung Cancer 55:165–171

    Article  CAS  PubMed  Google Scholar 

  9. Fletcher JW, Djulbegovic B, Soares HP et al (2008) Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 49:480–508

    Article  PubMed  Google Scholar 

  10. Grigsby PW (2009) PET/CT imaging to guide cervical cancer therapy. Future Oncol 5:953–958

    Article  PubMed  Google Scholar 

  11. Groves AM, Win T, Haim SB et al (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830

    Article  PubMed  Google Scholar 

  12. Hahn OM, Yang C, Medved M et al (2008) Dynamic contrast-enhanced magnetic resonance imaging pharmacodynamic biomarker study of sorafenib in metastatic renal carcinoma. J Clin Oncol 26:4572–4578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Intven M, Reerink O, Philippens ME (2014) Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging

  14. Kim H, Keene KS, Sarver DB et al (2014) Quantitative perfusion- and diffusion-weighted magnetic resonance imaging of gastrointestinal cancers treated with multikinase inhibitors: a pilot study. Gastrointest Cancer Res 7:75–81

    PubMed Central  PubMed  Google Scholar 

  15. Kim YN, Lee HY, Lee KS et al (2012) Dual-energy CT in patients treated with anti-angiogenic agents for non-small cell lung cancer: new method of monitoring tumor response? Korean J Radiol 13:702–710

    Article  PubMed Central  PubMed  Google Scholar 

  16. Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285

    Article  PubMed  Google Scholar 

  17. Kong XB, Zhu QY, Vidal PM et al (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3’-fluoro-3’-deoxythymidine and 3’-azido-3’-deoxythymidine. Antimicrob Agents Chemother 36:808–818

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. La Fougere C, Suchorska B, Bartenstein P et al (2011) Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 13:806–819

    Article  Google Scholar 

  19. Landry G, Granton PV, Reniers B et al (2011) Simulation study on potential accuracy gains from dual energy CT tissue segmentation for low-energy brachytherapy Monte Carlo dose calculations. Phys Med Biol 56:6257–6278

    Article  PubMed  Google Scholar 

  20. Macmanus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94

    Article  PubMed  Google Scholar 

  21. Meyer M, Hohenberger P, Apfaltrer P et al (2013) CT-based response assessment of advanced gastrointestinal stromal tumor: dual energy CT provides a more predictive imaging biomarker of clinical benefit than RECIST or Choi criteria. Eur J Radiol 82:923–928

    Article  CAS  PubMed  Google Scholar 

  22. Notohamiprodjo M, Chandarana H, Mikheev A et al (2014) Combined intravoxel incoherent motion and diffusion tensor imaging of renal diffusion and flow anisotropy. Magn Reson Med

  23. Notohamiprodjo M, Sourbron S, Staehler M et al (2010) Measuring perfusion and permeability in renal cell carcinoma with dynamic contrast-enhanced MRI: a pilot study. J Magn Reson Imaging 31:490–501

    Article  PubMed  Google Scholar 

  24. Ogawa M, Hara M, Imafuji A et al (2012) Dual-energy CT can evaluate both hilar and mediastinal lymph nodes and lesion vascularity with a single scan at 60 seconds after contrast medium injection. Acad Radiol 19:1003–1010

    Article  PubMed  Google Scholar 

  25. Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Patel CN, Goldstone AR, Chowdhury FU et al (2010) FDG PET/CT in oncology: „raising the bar“. Clin Radiol 65:522–535

    Article  CAS  PubMed  Google Scholar 

  27. Salami SS, Vira MA, Turkbey B et al (2014) Multiparametric magnetic resonance imaging outperforms the Prostate Cancer Prevention Trial risk calculator in predicting clinically significant prostate cancer. Cancer 120:2876–2882

    Article  PubMed  Google Scholar 

  28. Schmid-Bindert G, Henzler T, Chu TQ et al (2012) Functional imaging of lung cancer using dual energy CT: how does iodine related attenuation correlate with standardized uptake value of 18FDG-PET-CT? Eur Radiol 22:93–103

    Article  CAS  PubMed  Google Scholar 

  29. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  CAS  PubMed  Google Scholar 

  30. Spira D, Grunwald L, Vogel W et al (2014) Midtreatment evaluation of lymphoma response to chemotherapy by volume perfusion computed tomography. J Comput Assist Tomogr 38:123–130

    Article  PubMed  Google Scholar 

  31. Wang Q, Shi G, Qi X et al (2014) Quantitative analysis of the dual-energy CT virtual spectral curve for focal liver lesions characterization. Eur J Radiol 83:1759–1764

    Article  PubMed  Google Scholar 

  32. Weber WA (2005) Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 46:983–995

    CAS  PubMed  Google Scholar 

  33. Zeisel SH (1981) Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr 1:95–121

    Article  CAS  PubMed  Google Scholar 

  34. Zhu W, Xing L, Yue J et al (2012) Prognostic significance of SUV on PET/CT in patients with localised oesophagogastric junction cancer receiving neoadjuvant chemotherapy/chemoradiation: a systematic review and meta-analysis. Br J Radiol 85:e694–e701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Pfannenberg, C. Brendle, W. Thaiss, M. Bongers, M. Notohamiprodjo, C. la Fougere und K. Nikolaou geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pfannenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brendle, C., Thaiss, W., Bongers, M. et al. Potenzial radiologischer und nuklearmedizinischer Funktionsdiagnostik. Onkologe 21, 402–413 (2015). https://doi.org/10.1007/s00761-014-2816-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-014-2816-x

Schlüsselwörter

Keywords

Navigation