Skip to main content
Log in

Radiologische Diagnostik zerebraler Metastasen

Radiological diagnosis of cerebral metastases

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Die radiologische Bildgebung spielt beim Nachweis von Hirnmetastasen (HM) eine Schlüsselrolle.

Ziel

In dieser Übersichtsarbeit soll der Stellenwert der Magnetresonanztomographie (MRT) und Computertomographie (CT) beim Nachweis von HM dargestellt werden. Neben typischen CT- und MRT-Bildbefunden werden technische Aspekte zur verbesserten Darstellung beschrieben und Differenzialdiagnosen erläutert.

Material und Methoden

Diese Übersichtsarbeit basiert auf eigenen Erfahrungen sowie relevanten Publikationen der letzten Jahre.

Ergebnisse

Bildgebende Methode der Wahl in der Diagnostik von HM ist die kontrastmittelverstärkte MRT. Dabei können eine Erhöhung der Kontrastmitteldosis sowie verschiedene MR-Techniken die Abgrenzbarkeit verbessern und die Nachweisrate erhöhen. Der Einsatz neuer funktionell-dynamischer MR-Verfahren wie Diffusions-MR, Perfusions-MR und MR-Spektroskopie erleichtert die Differenzialdiagnose und verbessert die Verlaufskontrolle. Falls die CT zur Diagnostik von HM eingesetzt wird, sollte diese mit erhöhter Kontrastmitteldosis, kombiniert mit einer Scanverzögerung, erfolgen.

Schlussfolgerungen

Die MRT hat insbesondere als multimodale MRT die höchste Sensitivität beim Nachweis von HM und sollte der CT vorgezogen werden.

Abstract

Background

Imaging plays a key role in the diagnosis of central nervous system (CNS) metastases.

Objective

In this review the role of magnetic resonance imaging (MRI) and computed tomography (CT) in the work-up of cerebral metastases is presented. In addition to characteristic imaging findings technical aspects for improved detection of CNS metastases and differential diagnoses are shown.

Material and methods

This review is based on own experience and relevant recent publications.

Results

In the diagnosis of CNS metastases contrast-enhanced MRI is the radiological method of choice. The sensitivity can be further increased by increasing contrast medium dose as well as the use of various magnetization transfer techniques. Functional MRI techniques, such as magnetic resonance spectroscopy, perfusion and diffusion-weighted imaging, diffusion tensor imaging and dynamic contrast-enhanced imaging can further improve the differential diagnosis and detection of recurrent disease. If CT is used for diagnostics of cerebral metastases it should be performed with increased contrast combined with a scan delay.

Conclusions

Contrast-enhanced MRI ideally using a multimodal protocol is the most sensitive method for the detection of CNS metastases and should therefore be preferred to CT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Argyriou AA, Chroni E, Polychronopoulos P et al (2006) Headache characteristics and brain metastases prediction in cancer patients. Eur J Cancer Care (Engl) 15:90–95

    Article  Google Scholar 

  2. Akeson P, Larsson EM, Kristoffersen DT et al (1995) Brain metastases-comparison of gadodiamide injection-enhanced MR imaging at standard and high dose, contrast-enhanced CT and non-contrast-enhanced MR imaging. Acta Radiol 36:300–306

    Article  CAS  PubMed  Google Scholar 

  3. Al-Okaili RN, Krejza J, Wang S et al (2006) Advanced MR imaging techniques in the diagnosis of intraaxial brain tumors in adults. Radiographics 26:173–189

    Article  Google Scholar 

  4. Barajas RF, Cha S (2012) Imaging diagnosis of brain metastasis. Prog Neurol Surg 25:55–73

    Article  PubMed  Google Scholar 

  5. Ba-Ssalamah A, Nöbauer-Huhmann IM, Pinker K et al (2003) Effect of contrast dose and field strength in the magnetic resonance detection of brain metastases. Invest Radiol 38:415–422

    PubMed  Google Scholar 

  6. Chen XZ, Ying XM, Ai L et al (2012) Differentiation between brain glioblastoma multiforme and solitary metastasis: qualitative and quantitative analysis based on routine MR imaging. AJNR Am J Neuroradiol 33:1907–1912

    Article  CAS  PubMed  Google Scholar 

  7. Delattre JY, Krol G, Thaler HT et al (1988) Distribution of brain metastases. Arch Neurol 45:741–744

    Article  CAS  PubMed  Google Scholar 

  8. Fan G, Sun B, Wu Z et al (2004) In vivo single-voxel proton MR spectroscopy in the differentiation of high-grade gliomas and solitary metastases. Clin Radiol 59:77–85

    Article  CAS  PubMed  Google Scholar 

  9. Gaviani P, Mullins ME, Braga TA et al (2006) Improved detection of metastatic melanoma by T2*-weighted imaging. AJNR Am J Neuroradiol 27:605–608

    CAS  PubMed  Google Scholar 

  10. Hakyemez B, Erdogan C, Gokalp G (2010) Solitary metastases and high-grade gliomas: radiological differentiation by morphometric analysis and perfusion-weighted MRI. Clin Radiol 65:15–20

    Article  CAS  PubMed  Google Scholar 

  11. Hayman LA, Evans RA, Hinck VC et al (1980) Delayed high iodine dose contrast computed tomography. Radiology 136:677–684

    CAS  PubMed  Google Scholar 

  12. Hwang TL, Close TB, Grego JM et al (1996) Predilection of brain metastaseis in gray and white matter junction and vascular borders. Cancer 77:1551–1555

    Article  CAS  PubMed  Google Scholar 

  13. Kaal EC, Taphoorn MJ, Vecht CJ (2005) Symptomatic management and imaging of brain metastases. J Neurooncol 75:15–20

    Article  PubMed  Google Scholar 

  14. Knauth M, Forsting M, Hartmann M et al (1996) MR enhancement of brain lesions: increased contrast dose compared with magnetization transfer. AJNR Am J Neuroradiol 17:853–859

    Google Scholar 

  15. Krüger S, Mottaghy FM, Buck AK et al (2011) Brain metastasis in lung cancer. Comparison of cerebral MRI and 18F-FDG-PET/CT for diagnosis in the initial staging. Nuklearmedizin 50:101–106

    Article  PubMed  Google Scholar 

  16. Lai PH, Hsu SS, Lo YK et al (2004) Role of diffusion-weighted imaging and proton MR spectroscopy in distinguishing between pyogenic brain abscess and necrotic brain tumor. Acta Neurol Taiwan 13:107–113

    PubMed  Google Scholar 

  17. Maroldi R, Ambrosi C, Farina D (2005) Metastatic disease of the brain: extra-axial metastases (skull, dura leptomeningeal and tumour spread. Eur Radiol 15:617–626

    Article  PubMed  Google Scholar 

  18. Mastronardi L, Lunardi P, Puzilli F et al (1999) The role of MRI in the surgical selection of cerebral metastases. Zentralbl Neurochir 60:141–145

    CAS  PubMed  Google Scholar 

  19. Paulson ES, Schmainda KM (2008) Comparison of dynamic susceptibility-weighted contrast-enhanced MR methods: recommendations for measuring relative cerebral blood volume in brain tumors. Radiology 249:601–613

    Article  PubMed  Google Scholar 

  20. Potts DG, Abbott GF, Sneidern JV von (1980) National Cancer Institute study evaluation of computed tomography in the diagnosis of intracranial neoplasms. III. Metastatic tumors. Radiology 136:657–664

    CAS  PubMed  Google Scholar 

  21. Runge VM, Kirsch JE, Burke VJ et al (1992) High-dose gadoteridol in MR imaging of intracranial neoplasms. J Magn Reson Imaging 2:9–18

    Article  CAS  PubMed  Google Scholar 

  22. Server A, Josefsen R, Kulle B et al (2010) Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Acta Radiol 51:316–325

    Article  PubMed  Google Scholar 

  23. Sidhu KP, Cooper P, Ramani R et al (2004) Delineation of brain metastases on CT images for planning radiosurgery: concerns regarding accuracy. Br J Radiol 77:39–42

    Article  CAS  PubMed  Google Scholar 

  24. Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidenced-based clinical practice guidelines (2nd edition). Chest 132:178–201

    Article  Google Scholar 

  25. Soffietti R, Cornu P, Delattre JY et al (2006) EFNS Guidelines on diagnosis and treatment of brain metastases: report of an EFNS Task Force. Eur J Neurol 13:674–681

    Article  CAS  PubMed  Google Scholar 

  26. Sze G, Krol G, Olsen WL et al (1987) Hemorrhagic neoplasms: MR mimics of occult vascular malformations. Am J Roentgenol 149:1223–1230

    Article  CAS  Google Scholar 

  27. Wang S, Kim S, Chawla S et al (2011) Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 32:507–514

    Article  CAS  PubMed  Google Scholar 

  28. Win T, Laroche CM, Groves AM et al (2004) The value of performing head CT in screening for cerebral metastases in patients with potentially resectable non-small cell lung cancer: experience from a UK cardiothoracic centre. Clin Radiol 59:935–938

    Article  CAS  PubMed  Google Scholar 

  29. Yokoi K, Kamiya N, Matsuguma H et al (1999) Detection of brain metastasis in potentially operable non-small cell lung cancer. A comparison of CT and MRI. Chest 115:714–719

    Article  CAS  PubMed  Google Scholar 

  30. Yuh WT, Fisher DJ, Runge VM et al (1994) Phase III multicenter trial of high-dose gadoteridol in MR evaluation of brain metastases. AJNR Am J Neuroradiol 15:1037–1051

    CAS  PubMed  Google Scholar 

Download references

Einhaltung der ethischen Richtlinien

Interessenkonflikt. T. Engelhorn und A. Dörfler geben an, dass kein Interessenkonflikt besteht. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Engelhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhorn, T., Dörfler, A. Radiologische Diagnostik zerebraler Metastasen. Onkologe 20, 20–30 (2014). https://doi.org/10.1007/s00761-013-2557-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-013-2557-2

Schlüsselwörter

Keywords

Navigation