Skip to main content

Advertisement

Log in

Knochensarkom des Kindes-, Jugend- und jungen Erwachsenenalters

Bone sarcoma in children, adolescents and young adults

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Hintergrund

Primäre maligne Knochentumoren sind selten. Sie machen nur 0,2 % der Malignomerkrankungen aus. Im Jugend- und jungen Erwachsenenalter zählen die malignen Knochentumoren, Osteosarkome und Ewing-Sarkome zu den häufigsten soliden Tumoren.

Material und Methoden

Recherche der Literatur und Auswertung klinischer Studien.

Ergebnisse

Durch die Einführung einer multimodalen Chemotherapie haben heute zwei Drittel der Patienten eine Chance auf Heilung. Wesentliche Voraussetzung für eine kurative Therapie ist eine frühzeitige Behandlung durch ein erfahrenes interdisziplinäres Team. Die Asservierung von Frischmaterial bei der Biopsie ist ein wichtiges Anliegen, um den Patienten die Möglichkeiten einer individualisierten Therapie zu geben.

Abstract

Context

Primary malignant bone tumors are rare and account for only 0.2 % of malignant tumurs. They are, however, more common in children, adolescents and young adults. Osteosarcoma and Ewing’s sarcoma are the most common malignant bone tumors in this age group.

Material and methods

Research of literature and analysis of clinical trials.

Results

Due to modern multimodal treatment, two thirds of patients can be cured if they undergo early and appropriate therapy which requires a precise and early diagnosis made by specialized radiologists and pathologists. Furthermore, treatment in selected medical centers with an interdisciplinary team of specialized oncologists, surgeons and radiotherapists is highly recommended. Nevertheless, clinicians and practitioners whose primary focus is not oncology must be aware of the typical but distinct signs and symptoms of malignant bone tumors, the basic diagnostic procedures and treatment schedules and possible late effects of treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Kaatsch P, Spix C, Michaelis M (1999) Deutsches Kinderkrebsregister. Mainz, Johannes Gutenberg Universität, Institut für Medizinische Statistik und Information, 2000

  2. Hansen MF, Seton M, Merchant A (2006) Osteosarcoma in Paget’s disease of bone. J Bone Miner Res 21(Suppl 2):58–63

    Article  Google Scholar 

  3. Fuchs B, Pritchard DJ (2002) Etiology of osteosarcoma. Clin Orthop Relat Res 40–52

  4. Bovee JV, Cleton-Jansen AM, Taminiau AH, Hoogendoorn PC (2005) Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment. Lancet Oncol 6:599–607

    Article  PubMed  CAS  Google Scholar 

  5. Cotterill SJ, Ahrens S, Paulussen M et al (2000) Prognostic factors in Ewing’s tumour of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing’s Sarcoma Study Group. J Clin Oncol 18:3108–3114

    PubMed  CAS  Google Scholar 

  6. Pollock BH, Krischer JP, Vietti TJ (1991) Interval between symptom onset and diagnosis of paediatric solid tumours. J Pediatr 119:725–732

    Article  PubMed  CAS  Google Scholar 

  7. Goorin AM, Schwartzentruber DJ, Devidas M et al (2003) Presurgical chemotherapy compared with immediate surgery and adjuvant chemotherapy for nonmetastatic osteosarcoma: Pediatric Oncology Group Study POG-8651. J Clin Oncol 21:1574–1580

    Article  PubMed  CAS  Google Scholar 

  8. Ferrari S, Mercuri M, Picci P et al (1999) Nonmetastatic osteosarcoma of the extremity: results of a neoadjuvant chemotherapy protocol (IOR/OS‐3) with high‐dose methotrexate, intraarterial or intravenous cisplatin, doxorubicin, and salvage chemotherapy based on histologic tumor response. Tumori 85:458‐464

    PubMed  CAS  Google Scholar 

  9. Bielack S, Kempf-Bielak B, Delling G et al (2002) Prognostic factors in high grade osteosarcoma of the extremities or trunk. An analysis of 1702 patients treated on neoadjuvant Cooperative Osteosarkoma Study Group protocols. J Clin Oncol 20:776–790

    Article  PubMed  Google Scholar 

  10. Lewis IJ, Nooij MA, Whelan J et al (2007) Improvement in histologic response but not survival in osteosarcoma patients treated with intensified chemotherapy: a randomized phase III trial of the European Osteosarcoma Intergroup. J Natl Cancer Inst 99:112–128

    Article  PubMed  CAS  Google Scholar 

  11. Carrle D, Bielack SS (2006) Current strategies of chemotherapy in osteosarcoma. Int Orthop 30:445–451

    Article  PubMed  Google Scholar 

  12. Bacci G, Ferrari S, Bertoni F et al (2000) Long‐term outcome for patients with nonmetastatic osteosarcoma of the extremity treated at the istituto ortopedico rizzoli according to the istituto ortopedico rizzoli/osteosarcoma‐2 protocol: an updated report. J Clin Oncol 18:4016‐4027

    PubMed  CAS  Google Scholar 

  13. Meyers PA, Schwartz CL, Krailo MD et al (2008) The addition of muramyl tripeptide to chemotherapy improves overall survival. A report from the Children’s Oncology Group. J Clin Oncol 26:633–638

    Article  PubMed  CAS  Google Scholar 

  14. Whelan J, Patterson D, Perisoglou M et al (2010) The role of interferons in the treatment of osteosarcoma. Pediatr Blood Cancer 54:350–354

    Article  PubMed  Google Scholar 

  15. Bielack SS, Kempf-Bielack B, Branscheid D et al (2009) Second and subsequent recurrences of osteosarcoma: presentation, treatment, and outcomes of 249 consecutive cooperative osteosarcoa study group patients. J Clin Oncol 27:557–565

    Article  PubMed  Google Scholar 

  16. Van Winkle P, Angiolillo A, Krailo M et al (2005) Ifosfamid, carboplatin, and etoposid (ICE) reinduction chemotherapie in a large cohort of children and adolescents with recurrent/refractory sarcoma: the Children’s Cancer Group (CCG) experience. Pediatr Blood Cancer 44:338–347

    Article  Google Scholar 

  17. Lavardiere C, Kolb EA, Supko JG et al (2003) Phase II study of ectainascidin 743 in heavily pretreated patients with recurrent osteosarcoma. Cancer 98:832–840

    Article  Google Scholar 

  18. Schuetze S, Walthen E, Choy E et al (2010) Results of a Sarcoma Allicance for Research through Collaboration (SARC) phase II trials of dasatinib in previously treated, high grade, advanced sarcoma. J Clin Oncol 28(15s)

  19. Wan X, Helman LJ (2007) The biology behind TOR inhibition in Sarcoma. Oncologist 12:1007–1018

    Article  PubMed  Google Scholar 

  20. Pignochino Y, Grignani G, Cavalloni G (2009) Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involoving the inhibition of ERK1/2, MCL-2 and ezrin pathways. Mol Cancer 8:118

    Article  PubMed  Google Scholar 

  21. Korpanty G, Sullivan LA, Smyth E et al (2010) Molecular and clinical aspects of targeting the VEGF pathway in tumors. J Oncol ID:652320

    Google Scholar 

  22. Ebb D, Meyers P, Grier H et al (2012) Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children’s oncology group. J Clin Oncol 30:2545–2551

    Article  PubMed  CAS  Google Scholar 

  23. Wachtel M, Schäfer BW (2010) Targets for cancer therapy in childhood sarcomas. Cancer Treat Rev 36:318–327

    Article  PubMed  CAS  Google Scholar 

  24. Ladenstein R, Barbor F et al (2007) Outcome of extraosseous Ewing sarcomas and peripheral primitive neuroectodermal tumours in 464 patients within consecutive trials of two cooperative German study groups. Pediatr Blood Cancer 49:411

    Google Scholar 

  25. Ladenstein R, Pötschger U, Le Deley MC et al (2010) Primary disseminated multifocal Ewing sarcoma: results of the Euro-EWING 99 trial. J Clin Oncol 28:3284–3291

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins DE et al (2010) Ewing Sarcoma. In: Pizzo PA, Poplack DG (Hrsg) Principles and Practice of Pediatric Oncology. 6. Aufl., Lippincott Williams & Wilkins, Philadelphia, S 987–1014

  27. Haeusler J, Ranft A, Boelling T et al (2010) The value of local treatment in patients with primary, disseminated, multifocal Ewing sarcoma (PDMES). Cancer 116:443–450

    Article  PubMed  Google Scholar 

  28. Sailer S, Harmon D, Mankin H et al (1988) Ewing’s sarcoma: Surgical resection as a prognostic factor. Int J Radiat Oncol Biol Phys 15:43

    Article  PubMed  CAS  Google Scholar 

  29. Schuck A, Ahrens S, Paulussen M et al (2003) Local therapy in localized Ewing tumors: results of 1058 patients treated in the CESS81, CESS86 and EICESS92 trials. Int J Radiation Oncology Biol Phys 55:168–172

    Article  Google Scholar 

  30. Nesbit ME Jr, Gehan EA, Burgert EO et al (1990) Multimodal therapy for the management of primary, nonmetastatic Ewing’s sarcoma of bone: a long-term follow-up of the First Intergroup study. J Clin Oncol 8:1664–1674

    PubMed  Google Scholar 

  31. Hunold A, Weddeling N, Paulussen M et al (2006) Topotecan and cyclophosphamide in patients with refractory or relapsed Ewing tumors. Pediatr Blood Cancer 47:795–800

    Article  PubMed  Google Scholar 

  32. Wagner LM, McAllister N, Goldsby RE et al (2007) Temozolomide and intravenous irinotecan for treatment of advanced Ewing sarcoma. Pediatr Blood Cancer 48:132–139

    Article  PubMed  Google Scholar 

  33. Baruchel S, Pappo A, Krailo M et al (2012) A phase 2 trial of trabectedin in children with recurrent rhabdomyosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft tissue sarcomas: a report from the Children’s Oncology Group. Eur J Cancer 48:579–585

    Article  PubMed  CAS  Google Scholar 

  34. Juergens H, Daw NC, Geoerger B et al (2011) Preliminary efficacy of the anti-insulin-like growth factor type 1 receptor antibody figitumumab in patients with refractory Ewing sarcoma. J Clin Oncol 29:4534–4540

    Article  PubMed  CAS  Google Scholar 

  35. Pappo S, Patel SR, Crowley J et al (2011) R1507, a monoclonal antibody to the insulin-like growth factor 1 receptor, in patients with recurrent or refractory Ewing sarcoma family of tumors: results of a phase II Sarcoma Alliance for Research through Collaboration study. J Clin Oncol 29:4541–4547

    Article  PubMed  CAS  Google Scholar 

  36. Brenner JC, Feng FY, Han S et al (2012) PARP-1 inhibition as a targeted strategy to treat Ewing’s sarcoma. Cancer Res 72:1608–1613

    Article  PubMed  CAS  Google Scholar 

  37. Garnett MJ, Edelman EJ, Heidorn SJ et al (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–575

    Article  PubMed  CAS  Google Scholar 

  38. Kovar H, Alonso J, Aman P et al (2012) The first European interdisciplinary Ewing sarcoma research summit. Front Oncol 2:54 doi:10.3389/fonc.2012.00054

    Article  PubMed  Google Scholar 

  39. Shor AC, Keschman EA, Lee FY et al (2007) Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 67:2800–2808

    Article  PubMed  CAS  Google Scholar 

  40. Kim LC, Song L, Haura EB (2009) SRC kinases as therapeutic targets for cancer. Nat Rev Clin Oncol 6:587–595

    Article  PubMed  Google Scholar 

  41. Dalal S, Berry AM, Cullinane CJ et al (2008) Vascular endothelial growth factor: atherapeutic target for Tumors of the Ewing’s sarcoma family. Clin Cancer Res 11:2364–2378

    Article  Google Scholar 

  42. Glade Bender JL Adamson PC, Reid JM et al (2008) Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: a Children’s Oncology Group Study. J Clin Oncol 26:399–405

    Article  Google Scholar 

  43. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  44. Salzer-Kuntschik M, Delling G, Beron G, Sigmund R (1983) Morphological grades of regression in osteosarcoma after polychemotherapy – study COSS80. J Cancer Res Clin Oncol 106:21–24

    Article  PubMed  Google Scholar 

  45. Cesari M, Bertoni F, Bacchini P et al (2007) Mesenchymal chondrosarcoma. An analysis of patients treated at a single institution. Tumori 93:423–427

    PubMed  Google Scholar 

  46. Gelderblom H, Hogendoorn PC, Dijkstra SD et al (2008) The clincial approach towards chondrosarcoma. Oncologist 13:320–328

    Article  PubMed  Google Scholar 

  47. Stahl M, Ranft A, Paulussen M et al (2011) Risk of recurrence and survival after relapse in patients with Ewing sarcoma. Pediatr Blood Cancer 57:549–553

    Article  PubMed  Google Scholar 

Download references

Danksagung

Dank an die Förderer: Deutsche Krebshilfe: DKH-108128. Bundesministerium für Bildung und Forschung (BMBF) Projektträger Deutsches Zentrum für Luft- und Raumfahrt e. V. 01GM0869 und 01KT1310; EuroBoNet (EU-FP6); ENCCA, EEC und PanCareLIFE (EU-FP7).

Interessenkonflikt

Die korrespondierende Autorin gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Dirksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirksen, U. Knochensarkom des Kindes-, Jugend- und jungen Erwachsenenalters. Onkologe 19, 657–666 (2013). https://doi.org/10.1007/s00761-013-2486-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-013-2486-0

Schlüsselwörter

Keywords

Navigation