Skip to main content
Log in

Aktueller Stand der Molekularpathologie von Knochentumoren

Current state of molecular pathology of bone tumors

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Diagnostik

Die morphologische Diagnose von Knochentumoren stellt oft eine Herausforderung dar. Molekularpathologisch sind bei der Routinediagnostik von Knochentumoren bisher zwei spezifische genetische Veränderungen von Bedeutung: zum einen die Detektion der EWSR1-Translokation bei Ewing-Sarkomen, zum anderen die GNAS1-Mutationsanalyse bei fibröser Dysplasie. Sensitivere und schnellere Techniken ermöglichen jedoch eine bessere Detektion von spezifischen genetischen Veränderungen bei Knochentumoren.

Ergebnisse und Schlussfolgerung

So lassen sich bei vielen anderen Knochentumoren spezifische Translokationen und Mutationen feststellen, mit denen sich in Zukunft die Diagnose anhand des morphologischen Bilds durch den molekularpathologischen Nachweis dieser spezifischen genetischen Veränderung unterstützen lässt. Manche Tumoren, wie z. B. das Osteosarkom, weisen jedoch eine generell hohe genetische Instabilität mit zahlreichen, nichtspezifischen genetischen Veränderungen auf.

Abstract

Diagnosis

The morphological diagnosis of bone tumors can often be challenging. In molecular pathology only two genetic aberrations are used in routine diagnostics of bone tumors: the detection of the EWSR1 translocation in Ewing’s sarcoma and the GNAS1 mutation analysis in fibrous dysplasia. Faster and more sensitive techniques allow the identification of specific genetic aberrations in many bone tumors.

Results and conclusion

This will help support the diagnosis of bone tumors by identification of these specific translocations and mutations with the help of molecular pathology. However, some tumors, such as osteosarcomas, show a high genetic instability without recurrent genetic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Amary MF, Bacsi K, Maggiani F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343

    Article  PubMed  CAS  Google Scholar 

  2. Choy E, Hornicek F, Macconaill L et al (2012) High-throughput genotyping in osteosarcoma identifies multiple mutations in phosphoinositide-3-kinase and other oncogenes. Cancer 118:2905–2914

    Article  PubMed  CAS  Google Scholar 

  3. Delattre O, Zucman J, Melot T et al (1994) The Ewing family of tumors–a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331:294–299

    Article  PubMed  CAS  Google Scholar 

  4. Errani C, Zhang L, Sung YS et al (2011) A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosomes Cancer 50:644–653

    Article  PubMed  CAS  Google Scholar 

  5. Hallor KH, Staaf J, Jönsson G et al (2008) Frequent deletion of the CDKN2A locus in chordoma: analysis of chromosomal imbalances using array comparative genomic hybridisation. Br J Cancer 98:434–442

    Article  PubMed  CAS  Google Scholar 

  6. Haroche J, Charlotte F, Arnaud L et al (2012) High prevalence of BRAF V600E mutations in Erdheim-Chester disease but not in other non-Langerhans cell histiocytoses. Blood 120:2700–2703

    Article  PubMed  CAS  Google Scholar 

  7. Haroche J, Cohen-Aubart F, Emile JF et al (2013) Dramatic efficacy of vemurafenib in both multisystemic and refractory Erdheim-Chester disease and Langerhans cell histiocytosis harboring the BRAF V600E mutation. Blood 121:1495–1500

    Article  PubMed  CAS  Google Scholar 

  8. Idowu BD, Al-Adnani M, O’donnell P et al (2007) A sensitive mutation-specific screening technique for GNAS1 mutations in cases of fibrous dysplasia: the first report of a codon 227 mutation in bone. Histopathology 50:691–704

    Article  PubMed  CAS  Google Scholar 

  9. Jedlicka P (2010) Ewing Sarcoma, an enigmatic malignancy of likely progenitor cell origin, driven by transcription factor oncogenic fusions. Int J Clin Exp Pathol 3:338–347

    PubMed  CAS  Google Scholar 

  10. Jones KB, Piombo V, Searby C et al (2010) A mouse model of osteochondromagenesis from clonal inactivation of Ext1 in chondrocytes. Proc Natl Acad Sci U S A 107:2054–2059

    Article  PubMed  CAS  Google Scholar 

  11. Ladanyi M, Gerald W (1994) Fusion of the EWS and WT1 genes in the desmoplastic small round cell tumor. Cancer Res 54:2837–2840

    PubMed  CAS  Google Scholar 

  12. Le Deley MC, Delattre O, Schaefer KL et al (2010) Impact of EWS-ETS fusion type on disease progression in Ewing’s sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-E.W.I.N.G. 99 trial. J Clin Oncol 28:1982–1988

    Article  Google Scholar 

  13. Nowell PC, Hungerford DA (1962) Chromosome studies in human leukemia. IV. Myeloproliferative syndrome and other atypical myeloid disorders. J Natl Cancer Inst 29:911–931

    PubMed  CAS  Google Scholar 

  14. Panagopoulos I, Mertens F, Isaksson M et al (2002) Molecular genetic characterization of the EWS/CHN and RBP56/CHN fusion genes in extraskeletal myxoid chondrosarcoma. Genes Chromosomes Cancer 35:340–352

    Article  PubMed  CAS  Google Scholar 

  15. Pansuriya TC, Van Eijk R, D’adamo P et al (2011) Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat Genet 43:1256–1261

    Article  PubMed  CAS  Google Scholar 

  16. Park HR, Jung WW, Bertoni F et al (2004) Molecular analysis of p53, MDM2 and H-ras genes in low-grade central osteosarcoma. Pathol Res Pract 200:439–445

    Article  PubMed  CAS  Google Scholar 

  17. Pollandt K, Engels C, Kaiser E et al (2001) Gsalpha gene mutations in monostotic fibrous dysplasia of bone and fibrous dysplasia-like low-grade central osteosarcoma. Virchows Arch 439:170–175

    Article  PubMed  CAS  Google Scholar 

  18. Presneau N, Shalaby A, YE H et al (2011) Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol 223:327–335

    Article  PubMed  CAS  Google Scholar 

  19. Raskind WH, Conrad EU, Matsushita M (1996) Frequent loss of heterozygosity for markers on chromosome arm 10q in chondrosarcomas. Genes Chromosomes Cancer 16:138–143

    Article  PubMed  CAS  Google Scholar 

  20. Sakamoto A, Oda Y, Iwamoto Y et al (2000) A comparative study of fibrous dysplasia and osteofibrous dysplasia with regard to Gsalpha mutation at the Arg201 codon: polymerase chain reaction-restriction fragment length polymorphism analysis of paraffin-embedded tissues. J Mol Diagn 2:67–72

    Article  PubMed  CAS  Google Scholar 

  21. Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet 145:1–30

    Article  PubMed  CAS  Google Scholar 

  22. Sankar S, Lessnick SL (2011) Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet 204:351–365

    Article  PubMed  CAS  Google Scholar 

  23. Schrage YM, Lam S, Jochemsen AG et al (2009) Central chondrosarcoma progression is associated with pRb pathway alterations: CDK4 down-regulation and p16 overexpression inhibit cell growth in vitro. J Cell Mol Med 13:2843–2852

    Article  PubMed  CAS  Google Scholar 

  24. Sciot R, Dorfman H, Brys P et al (2000) Cytogenetic-morphologic correlations in aneurysmal bone cyst, giant cell tumor of bone and combined lesions. A report from the CHAMP study group. Mod Pathol 13:1206–1210

    Article  PubMed  CAS  Google Scholar 

  25. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  PubMed  CAS  Google Scholar 

  26. Taub R, Kirsch I, Morton C et al (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79:7837–7841

    Article  PubMed  CAS  Google Scholar 

  27. Wagner LM, Smolarek TA, Sumegi J et al (2012) Assessment of minimal residual disease in ewing sarcoma. Sarcoma 2012:780129

    Article  PubMed  Google Scholar 

  28. Wang L, Motoi T, Khanin R et al (2012) Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer 51:127–139

    Article  PubMed  CAS  Google Scholar 

  29. Yan H, Parsons DW, Jin G et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773

    Article  PubMed  CAS  Google Scholar 

  30. Yang J, Yang D, Sun Y et al (2011) Genetic amplification of the vascular endothelial growth factor (VEGF) pathway genes, including VEGFA, in human osteosarcoma. Cancer 117:4925–4938

    Article  PubMed  CAS  Google Scholar 

  31. Ye Y, Pringle LM, Lau AW et al (2010) TRE17/USP6 oncogene translocated in aneurysmal bone cyst induces matrix metalloproteinase production via activation of NF-kappaB. Oncogene 29:3619–3629

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin gibt für sich und ihren Koautor an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Böhmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhmer, V., Köhler, G. Aktueller Stand der Molekularpathologie von Knochentumoren. Onkologe 19, 629–634 (2013). https://doi.org/10.1007/s00761-013-2479-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-013-2479-z

Schlüsselwörter

Keywords

Navigation