Skip to main content

Advertisement

Log in

Molekular zielgerichtete Tumortherapie durch Eingriffe in die zelluläre Signaltransduktion

Molecular targeted tumor therapy by intervention in cellular signal transduction

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die Erkenntnisse der molekularen Onkologie im Hinblick auf die Mechanismen der Krebsentstehung und die Besonderheiten maligner Tumorzellen haben in der vergangenen Dekade zur Entwicklung einer Reihe neuer, zielgerichteter Ansätze zur Behandlung von Krebserkrankungen geführt. Diese adressieren gezielt Moleküle und Signalwege, die für das Überleben, die Proliferation und die Ausbreitung maligner Zellen essenziell sind. Zentrale Ansatzpunkte sind die Schlüsselmodulatoren des programmierten Zelltods, Wachstumsfaktorrezeptor-Signalkaskaden und die Regulatoren des Tumor-Mikromilieus. Während die Inhibition des epidermalen Wachstumsfaktorrezeptors in diesem Kontext heute bereits einen festen Therapiebestandteil für bestimmte Malignome darstellt, befinden sich Substanzen, die über Todesrezeptorsignalwege oder die Regulation von Mitgliedern der BCL-2-Proteinfamilie gezielt den programmierten Zelltod (Apoptose) auslösen, noch in der klinischen Erprobung. Im Hinblick auf die therapeutische Modulation des Tumor-Mikromilieus zählen die Inhibition des Blutgefäßwachstums im Tumor und die Hemmung der integrinvermittelten Anheftung maligner Zellen an ihre Umgebung sowie die Blockierung bestimmter Enzymaktivitäten (Matrixmetalloproteinasen), die essenziell für die Auswanderung von Tumorzellen in umliegende Gewebe sind, zu den primären Angriffspunkten.

Gemeinsam ist all diesen Ansätzen der Versuch, eine möglichst spezifische therapeutische Wirkung auf den Tumor zu erzielen und damit die Nebenwirkungen am gesunden Körpergewebe zu minimieren. Tatsächlich unterscheidet sich das Nebenwirkungsspektrum der molekular zielgerichteten Therapien von dem der klassischen onkologischen Verfahren wie Strahlentherapie und Chemotherapie fundamental. Allerdings fand sich für die Mehrzahl dieser Substanzen in der klinischen Prüfung leider nur eine geringe Wirksamkeit, wenn sie als Monotherapie eingesetzt werden. Daher müssen die Kombination dieser Agenzien mit bewährten onkologischen Verfahren und ihre Integration in die bereits bestehenden multimodalen Behandlungsschemata zukünftig im Rahmen klinischer Studien weitergeführt werden, um den tatsächlichen therapeutischen Mehrwert dieser Ansätze bewerten zu können.

Abstract

The increasing knowledge on the molecular pathogenesis of cancer has led to the development of a wide spectrum of targeted treatment approaches. Key targets are molecules belonging to signaling pathways involved in the regulation of cell survival, proliferation, invasion and spread of malignant cells. Central regulators in the context of cell survival are molecules involved in the regulation of programmed cell death, epidermal growth factor receptor pathways and regulators of the tumor microenvironment. The inhibition of the epidermal growth factor receptor has already become an accepted approach. In contrast to that, direct interference with cell death signaling, i.e. death receptor based approaches and the inhibition of Bcl proteins, is still subject to clinical testing. Regarding the therapeutic modulation of the tumor microenvironment the primary drug targets are those molecules involved in the interaction of malignant cells with the surrounding normal stromal cells and/or with the extracellular matrix. Currently, inhibition of neo-angiogenesis and the blocking of intergrin-mediated adhesion of malignant cells to the surrounding tissue have entered clinical practice or are in advanced phases of clinical testing. The common denominator of all these approaches is to try to specifically target the tumor with no or minimal interference of normal tissue function.

The side-effects of molecular targeted drugs fundamentally differ from those of the conventional oncological methods, such as radiotherapy and cytotoxic chemotherapy. However, for the majority of these targeting agents, clinical testing has unfortunately found only slight efficacy when used as a monotherapy. Thus, the combination of these substances with proven oncological procedures and the integration into highly complex multimodal protocols is urgently needed to evaluate the therapeutic surplus of the multitude of newly developed agents. The aim of the current article is to give a short overview of the current status of targeted interference with cell death signaling and neighboring fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Aas T, Borresen AL, Geisler S et al (1996) Specific P53 mutations are associated with de novo resistance to doxorubicin in breast cancer patients. Nat Med 2:811–814

    Article  PubMed  CAS  Google Scholar 

  2. Belka C, Schmid B, Marini P et al (2001) Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20:2190–2196

    Article  PubMed  CAS  Google Scholar 

  3. Biroccio A, Candiloro A, Mottolese M et al (2000) Bcl-2 overexpression and hypoxia synergistically act to modulate vascular endothelial growth factor expression and in vivo angiogenesis in a breast carcinoma line. Faseb J 14:652–660

    PubMed  CAS  Google Scholar 

  4. Bisanz K, Yu J, Edlund M et al (2005) Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model. Mol Ther 12:634–643

    Article  PubMed  CAS  Google Scholar 

  5. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–578

    Article  PubMed  CAS  Google Scholar 

  6. Chinnaiyan AM, Prasad U, Shankar S et al (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci U S A 97:1754–1759

    Article  PubMed  CAS  Google Scholar 

  7. Choi J, Choi K, Benveniste EN et al (2005) Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Res 65:5554–5560

    Article  PubMed  CAS  Google Scholar 

  8. Chow LQ, Eckhardt SG, Gustafson DL et al (2006) HGS-ETR1, an antibody targeting TRAIL-R1, in combination with paclitaxel and carboplatin in patients with advanced solid malignancies: Results of a phase I and PK study. J Clin Oncol 24:103S–103S

    Google Scholar 

  9. Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed  CAS  Google Scholar 

  10. Conway JG, Trexler SJ, Wakefield JA et al (1996) Effect of matrix metalloproteinase inhibitors on tumor growth and spontaneous metastasis. Clin Exp Metastasis 14:115–124

    Article  PubMed  CAS  Google Scholar 

  11. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  PubMed  CAS  Google Scholar 

  12. De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447

    Article  Google Scholar 

  13. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174

    Article  PubMed  CAS  Google Scholar 

  14. Eskens F, Dumez H, Hoekstra R et al (2003) Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins alpha v beta 3 and alpha v beta 5 in patients with advanced solid tumours. Eur J Cancer 39:917–926

    Article  PubMed  CAS  Google Scholar 

  15. Feinberg B, Kurzrock R, Talpaz M et al (1988) A Phase-I Trial Of Intravenously-Administered Recombinant Tumor Necrosis Factor-Alpha In Cancer-Patients. J Clin Oncol 6:1328–1334

    PubMed  CAS  Google Scholar 

  16. Goh HS, Yao J, Smith DR (1995) P53 Point Mutation And Survival In Colorectal-Cancer Patients. Cancer Res 55:5217–5221

    PubMed  CAS  Google Scholar 

  17. Greco FA, Bonomi P, Crawford J et al (2008) Phase 2 study of mapatumumab, a fully human agonistic monoclonal antibody which targets and activates the TRAIL receptor-1, in patients with advanced non-small cell lung cancer. Lung Cancer 61:82–90

    Article  PubMed  Google Scholar 

  18. Haddad RI, Shin DM (2008) Recent advances in head and neck cancer. N Engl J Med 359:1143–1154

    Article  PubMed  CAS  Google Scholar 

  19. Heist RS, Fain J, Chinnasami B et al (2010) Phase I/II Study of AT-101 with Topotecan in Relapsed and Refractory Small Cell Lung Cancer. Journal of Thoracic Oncology 5:1637–1643

    Article  PubMed  Google Scholar 

  20. Herbst RS, Mendolson DS, Ebbinghaus S et al (2006) A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer. J Clin Oncol 24:124S–124S

    Article  Google Scholar 

  21. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  22. Kanzler S, Trarbach T, Heinemann V et al (2005) Results of a phase 2 study of HGS-ETR1, a fully human agonistic monoclonal antibody to TRAIL Receptor 1, in subjects with relapsed or refractory colorectal cancer (CRC). Ejc Supplements 3:178–178

    Google Scholar 

  23. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  PubMed  CAS  Google Scholar 

  24. Kyndi M, Sorensen FB, Knudsen H et al (2008) Impact of BCL2 and p53 on postmastectomy radiotherapy response in high-risk breast cancer. A subgroup analysis of DBCG82 b&c. Acta Oncol 47:608–617

    Article  PubMed  CAS  Google Scholar 

  25. Saltz JI L, Schwartzberg L, Stephenson J et al (2009) Phase Ib study of AMG 655 in combination with modified FOLFOX6 (mFOLFOX6) and bevacizumab (B) for the first-line treatment of patients with metastatic colorectal cancer (mCRC). In 2009 Gastrointestinal Cancers Symposium

  26. Saltz JI L, Schwartzberg L, Stephenson J et al (2009) Safety and efficacy of AMG 655 plus modified FOLFOX6 (mFOLFOX6) and bevacizumab (B) for the first-line treatment of patients (pts) with metastatic colorectal cancer (mCRC). In: J Clin Oncol, ASCO Annual Meeting Proceedings

  27. Lickliter JD, Cox J, McCarron J et al (2007) Small-molecule Bcl-2 inhibitors sensitise tumour cells to immune-mediated destruction. Br J Cancer 96:600–608

    Article  PubMed  CAS  Google Scholar 

  28. Luo X, Budihardjo I, Zou H et al (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  29. Marini P, Betsch A, Jendrossek V et al (2003) Additive and synergistic effects on TRAIL/Apo2L induced apoptosis after irradiation and eradication of clonogenic cells in solid tumor cell lines in vitro. EJC Supplements 1:S291

    Google Scholar 

  30. Marini P, Denzinger S, Schiller D et al (2006) Combined treatment of colorectal tumours with agonistic TRAIL receptor antibodies HGS-ETR1 and HGS-ETR2 and radiotherapy: enhanced effects in vitro and dose-dependent growth delay in vivo. Oncogene 25:5145–5154

    PubMed  CAS  Google Scholar 

  31. Marini P, Schmid A, Jendrossek V et al (2005) Irradiation specifically sensitises solid tumour cell lines to TRAIL mediated apoptosis. BMC Cancer

  32. Miller KD, Chap LI, Holmes FA et al (2005) Randomized phase III trial of capecitabine compared with bevacizumab plus capecitabine in patients with previously treated metastatic breast cancer. J Clin Oncol 23:792–799

    Article  PubMed  CAS  Google Scholar 

  33. Mom CH, Sleijfer S, Gietema JA et al (2006) Mapatumumab, a fully human agonistic monoclonal antibody that targets TRAIL-R1, in combination with gemcitabine and cisplatin: a phase 1 study in patients with advanced solid malignancies. Ejc Supplements 4:202

    Google Scholar 

  34. Mom CH, Sleijfer S, Gietema JA et al (2005) A phase 1 study of HGS-ETR1, a fully human agonistic monoclonal antibody to the TRAIL-R1, in combination with gemcitabine and cisplatin in subjects with advanced solid malignancies. Clin Cancer Res 11:9117S–9117S

    Google Scholar 

  35. Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth – bystanders turning into key players. Curr Opin Genet Dev 19:67–73

    Article  PubMed  Google Scholar 

  36. LoRusso DH P, Heath E, Kurzrock R et al (2007) First-in-human study of AMG 655, a pro-apoptotic TRAIL receptor-2 agonist, in adult patients with advanced solid tumors. In:

  37. Plummer R, Attard G, Pacey S et al (2007) Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers. Clin Cancer Res 13:6187–6194

    Article  PubMed  CAS  Google Scholar 

  38. Pro B, Leber B, Smith M et al (2008) Phase II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in combination with rituximab in patients with recurrent B-cell non-Hodgkin lymphoma. Br J Haematol 143:355–360

    Article  PubMed  CAS  Google Scholar 

  39. Quintas-Cardama A, Kantarjian H, Cortes J (2007) Flying under the radar: the new wave of BCR-ABL inhibitors. Nat Rev Drug Discov 6:834–848

    Article  PubMed  CAS  Google Scholar 

  40. Reck M, Pawel J von, Zatloukal P et al (2010) Overall survival with cisplatin-gemcitabine and bevacizumab or placebo as first-line therapy for nonsquamous non-small-cell lung cancer: results from a randomised phase III trial (AVAiL). Ann Oncol 21:1804–1809

    Article  PubMed  CAS  Google Scholar 

  41. Saltz LB, Clarke S, Diaz-Rubio E et al (2008) Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer: A randomized phase III study. J Clin Oncol 26:2013–2019

    Article  PubMed  CAS  Google Scholar 

  42. Sarantopoulos J, Wakelee H, Mita M et al (2005) HGS-ETR2-ST02: A phase 1 clinical trial of HGS-ETR2, a fully-human activating monoclonal antibody to TRAIL-R2, in patients with advanced solid tumors. Clin Cancer Res 11:9104S–9104S

    Google Scholar 

  43. Savage DG, Antman KH (2002) Drug therapy: Imatinib mesylate – A new oral targeted therapy. N Engl J Med 346:683–693

    Article  PubMed  CAS  Google Scholar 

  44. Schimmer AD, O’Brien S, Kantarjian H et al (2008) A phase i study of the pan bcl-2 family inhibitor obatoclax mesylate in patients with advanced hematologic malignancies. Clin Cancer Res 14:8295–8301

    Article  PubMed  CAS  Google Scholar 

  45. SchmidtUllrich RK, Mikkelsen RB, Dent P et al (1997) Radiation-induced proliferation of the human A431 squamous carcinoma cells is dependent on EGFR tyrosine phosphorylation. Oncogene 15:1191–1197

    Article  CAS  Google Scholar 

  46. Schmidtullrich RK, Valerie KC, Chan W, McWilliams D (1994) Altered Expression Of Epidermal Growth-Factor Receptor And Estrogen-Receptor In Mcf-7 Cells After Single And Repeated Radiation Exposures. Int J Radiat Oncol Biol Phys 29:813–819

    Article  CAS  Google Scholar 

  47. Sethi T, Rintoul RC, Moore SM et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: A mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    Article  PubMed  CAS  Google Scholar 

  48. Sikic BI, Wakelee HA, Von Mehren M et al (2007) A phase 1b study to assess the safety of lexatumumab, a human monoclonal antibody that activates TRAIL-R2, in combination with gemcitabine, pemetrexed, doxorubicin or FOLFIRI. Mol Cancer Ther 6:3454S–3455S

    Google Scholar 

  49. Silvestrini R, Veneroni S, Daidone MG et al (1994) The Bcl-2 Protein – A Prognostic Indicator Strongly Related To P53 Protein In Lymph Node-Negative Breast-Cancer Patients. J Natl Cancer Inst 86:499–504

    Article  PubMed  CAS  Google Scholar 

  50. Soria J, Smit E, Khayat D et al (2008) Safety, Pharmacokinetics, And Efficacy Of Recombinant Human (Rh)Apo2l/Trail In Combination With Paclitaxel, Carboplatin, And Bevacizumab (PCB) In Patients (PTS) With Advanced Non-Small Cell Lung Cancer (NSCLC): Results Of A Phase 1b Study. Ann Oncol 19:153–153

    Article  Google Scholar 

  51. Sternberg CN, Dumez H, Van Poppel H et al (2009) Docetaxel plus oblimersen sodium (Bcl-2 antisense oligonucleotide): an EORTC multicenter, randomized phase II study in patients with castration-resistant prostate cancer. Ann Oncol 20:1264–1269

    Article  PubMed  CAS  Google Scholar 

  52. Stupp R, Goldbrunner R, Neyns B et al (2007) Mature results of a phase I/IIA trial of the integrin inhibitor cilengitide (EMD121974) added to standard concomitant and adjuvant temozolomide and radiotherapy (TMZ/RT) for newly diagnosed glioblastoma (GBM). Neuro Oncol 9:517–517

    Google Scholar 

  53. Takahashi Y, Kitadai Y, Bucana CD et al (1995) Expression Of Vascular Endothelial Growth-Factor And Its Receptor, Kdr, Correlates With Vascularity, Metastasis, And Proliferation Of Human Colon-Cancer. Cancer Res 55:3964–3968

    PubMed  CAS  Google Scholar 

  54. Tolcher AW, Mita M, Meropol NJ et al (2007) Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1. J Clin Oncol 25:1390–1395

    Article  PubMed  CAS  Google Scholar 

  55. Tolcher AW, Mita M, Patnaik A et al (2004) A phase I and pharmacokinetic study of HGS-ETR1 (TRM-1), a human monoclonal agonist-anti body to TRAIL R1, in patients with advanced solid tumors. J Clin Oncol 22:3060

    Google Scholar 

  56. Trarbach T, Moehler M, Heinemann V et al (2010) Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 102:506–512

    Article  PubMed  CAS  Google Scholar 

  57. Tsujino T, Seshimo I, Yamamoto H et al (2007) Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13:2082–2090

    Article  PubMed  CAS  Google Scholar 

  58. Tuxhorn JA, Ayala GE, Smith MJ et al (2002) Reactive stroma in human prostate cancer: Induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 8:2912–2923

    PubMed  CAS  Google Scholar 

  59. Varner JA, Brooks PC, Cheresh DA (1995) The integrin alpha(V)beta(3): Angiogenesis and apoptosis. Cell Adhes Commun 3:367

    Article  PubMed  CAS  Google Scholar 

  60. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  61. Willett CG, Boucher Y, Tomaso E di et al (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10:145–147

    Article  PubMed  CAS  Google Scholar 

  62. Wilson WH, Connor OAO, Czuczman MS et al (2010) Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol 11:1149–1159

    Article  PubMed  CAS  Google Scholar 

  63. Younes A, Vose JM, Zelenetz AD et al (2005) Results of a phase 2 trial of HGS-ETR1 (Agonistic human monoclonal antibody to TRAIL receptor 1) in subjects with relapsed/refractory non-Hodgkin’s lymphoma (NHL). Blood 106:489

    Google Scholar 

  64. Zhang W, Park DJ, Lu B et al (2005) Epidermal growth factor receptor gene polymorphisms predict pelvic recurrence in patients with rectal cancer treated with chemoradiation. Clin Cancer Res 11:600–605

    PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.M. Niemoeller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niemoeller, O., Li, M., Lauber, K. et al. Molekular zielgerichtete Tumortherapie durch Eingriffe in die zelluläre Signaltransduktion. Onkologe 17, 520–527 (2011). https://doi.org/10.1007/s00761-011-2030-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-011-2030-z

Schlüsselwörter

Keywords

Navigation