Skip to main content

Advertisement

Log in

Die Rolle der Mikro-RNA bei der Entstehung onkologischer Erkrankungen

The role of microRNA in the development of oncological diseases

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Krebs ist eine genetische Erkrankung, die mit der Aktivierung von Onkogenen und Inaktivierung von Tumorsuppressorgenen einhergeht. Neben zahlreichen genetischen und epigenetischen Alterationen proteinkodierender Gene finden sich bei Krebs außerdem Veränderungen im Expressionsmuster kleiner, nichtkodierender Ribonukleinsäuremoleküle (Mikro-RNA, miRNA). Diese 17 bis 25 Nukleotide langen miRNAs regulieren wichtige tumorzellbiologische Prozesse, wie z. B. Zellproliferation, -differenzierung, Apoptose und Metastasierung. miRNAs binden sequenzspezifisch an das nichtkodierende 3’-Ende (3’-UTR) der mRNA und unterdrücken damit die Translation oder leiten eine mRNA-Degradation ein. Es wurden bereits über 506 verschiedene miRNAs identifiziert (http://www.mirbase.org). Das menschliche Genom kodiert vermutlich >1000 miRNAs. Die Translation von ~30% aller menschlichen Gene wird von miRNAs reguliert. Jede miRNA ist im Durchschnitt gegen 200 Genprodukte gerichtet und zahlreiche miRNAs können an das 3’-UTR einer einzigen mRNA binden. Krebszellen weisen ein gegenüber nichtneoplastischen Epithelzellen verändertes miRNA-Expressionsmuster auf, das teilweise auf Veränderungen in der miRNA-Synthese zurück zu führen ist.

Abstract

Malignant tumors are characterized by multiple genetic and epigenetic alterations, which include activation and overexpression of oncogenes and inactivation of tumor suppressor genes. Recently it has become apparent that apart from genetic and epigenetic changes in classical oncogenes and tumor suppressor genes, small 17–25 nucleotides long non-coding microRNAs (miRNAs) regulate major cellular processes involved in tumor biology, such as cell proliferation, differentiation, apoptosis and metastasis. miRNAs bind through sequence-specific base pairing to the 3’ untranslated region (3’-UTR) of the mRNA leading to its translational repression or degradation, thereby negatively regulating protein expression. At least 506 different miRNAs have been identified (http://www.mirbase.org) and it is believed that the human genome encodes >1,000 miRNAs. The translation of ~30% of all human genes is regulated by miRNAs. Each miRNA targets on average 200 gene products and multiple miRNAs can bind to the 3’-UTR of a single mRNA. Evidence is increasing that the deregulation of miRNAs in malignant tumors is linked to altered expression and activity of the miRNA-biogenesis machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Aigner A (2011) MicroRNAs (miRNAs) in cancer invasion and metastasis: therapeutic approaches based on metastasis-related miRNAs. J Mol Med DOI 10.1007/s00109-010-0716-0

  2. Ando T, Yoshida T, Enomoto S et al (2009) DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 124:2367–2374

    Article  PubMed  CAS  Google Scholar 

  3. Cowland JB, Hother C, Gronbaek K (2007) MicroRNAs and cancer. APMIS 115:1090–1106

    Article  PubMed  CAS  Google Scholar 

  4. Craig RW (2002) MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16:444–454

    Article  PubMed  CAS  Google Scholar 

  5. Fabbri M, Croce CM, Calin GA (2008) MicroRNAs. Cancer J 14:1–6

    Article  PubMed  CAS  Google Scholar 

  6. Farazi TA, Spitzer JI, Morozov P et al (2011) miRNAs in human cancer. J Pathol 223:102–115

    Article  PubMed  CAS  Google Scholar 

  7. Gupta S, Kass GE, Szegezdi E et al (2009) The mitochondrial death pathway: A promising therapeutic target in diseases. J Cell Mol Med

  8. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  PubMed  CAS  Google Scholar 

  9. Husmann G, Kaatsch P, Katalinic A et al (2010) Beiträge zur Gesundheitsberichterstattung des Bundes – Krebs in Deutschland 2005–2006 – Häufigkeiten und Trends. In: Robert Koch-Institut (Hrsg) und die Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (Hrsg.), Berlin

  10. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128:683–692

    Article  PubMed  CAS  Google Scholar 

  11. Kim DN, Chae HS, Oh ST et al (2007) Expression of viral microRNAs in epstein-barr virus-associated gastric carcinoma. J Virol 81:1033–1036

    Article  CAS  Google Scholar 

  12. Landi D, Gemignani F, Barale R et al (2008) A catalog of polymorphisms falling in microRNA-binding regions of cancer genes. DNA Cell Biol 27:35–43

    Article  PubMed  CAS  Google Scholar 

  13. Le XF, Merchant O, Bast RC et al (2010) The roles of microRNAs in the cancer invasion-metastasis cascade. Cancer Microenviron 3:137–147

    Article  PubMed  CAS  Google Scholar 

  14. Merritt WM, Lin YG, Han LY et al (2008) Dicer, drosha, and outcomes in patients with ovarian cancer. N Engl J Med 359:2641–2650

    Article  PubMed  CAS  Google Scholar 

  15. Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  PubMed  CAS  Google Scholar 

  16. Sasaki H, Miura K, Horii A et al (2008) Orthotopic implantation mouse model and cDNA microarray analysis indicates several genes potentially involved in lymph node metastasis of colorectal cancer. Cancer Sci 99:711–719

    Article  PubMed  CAS  Google Scholar 

  17. Schmidt A, Durgan J, Magalhaes A et al (2007) Rho GTPases regulate PRK2/PKN2 to control entry into mitosis and exit from cytokinesis. EMBO J 26:1624–1636

    Article  PubMed  CAS  Google Scholar 

  18. Siomi H, Siomi MC (2010) Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell 38:323–332

    Article  PubMed  CAS  Google Scholar 

  19. Tabin CJ, Bradley SM, Bargmann CI et al (1982) Mechanism of activation of a human oncogene. Nature 300:143–149

    Article  PubMed  CAS  Google Scholar 

  20. Takeda M, Arao T, Yokote H et al (2007) AZD2171 shows potent antitumor activity against gastric cancer over-expressing fibroblast growth factor receptor 2/keratinocyte growth factor receptor. Clin Cancer Res 13:3051–3057

    Article  PubMed  CAS  Google Scholar 

  21. Tchernitsa O, Kasajima A, Schäfer R et al (2010) Systematic evaluation of the miRNA-ome and its downstream effects on mRNA expression identifies gastric cancer progression. J Pathol 222:310–319

    Article  PubMed  Google Scholar 

  22. Tsang HT, Edwards TL, Wang X et al (2009) The hereditary spastic paraplegia proteins NIPA1, spastin and spartin are inhibitors of mammalian BMP signalling. Hum Mol Genet 18:3805–3821

    Article  PubMed  CAS  Google Scholar 

  23. Volinia S, Calin GA, Liu CG et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  24. Weichert W, Röske A, Gekeler V et al (2008) Association of patterns of class I histone deacetylase expression with patient prognosis in gastric cancer: a retrospective analysis. Lancet Oncol 9:139–148

    Article  PubMed  CAS  Google Scholar 

  25. Wu M, Jolicoeur N, Li Z, Zhang L et al (2008) Genetic variations of microRNAs in human cancer and their effects on the expression of miRNAs. Carcinogenesis 29:1710–1716

    Article  PubMed  CAS  Google Scholar 

  26. Zhao XY, Chen L, Li YH et al (2007) PlexinA1 expression in gastric carcinoma and its relationship with tumor angiogenesis and proliferation. World J Gastroenterol 13:6558–6561

    Article  PubMed  CAS  Google Scholar 

  27. Zimmerman AL, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300:10–19

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Röcken.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röcken, C. Die Rolle der Mikro-RNA bei der Entstehung onkologischer Erkrankungen. Onkologe 17, 487–494 (2011). https://doi.org/10.1007/s00761-011-2026-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-011-2026-8

Schlüsselwörter

Keywords

Navigation