Der Onkologe

, Volume 14, Issue 1, pp 22–30 | Cite as

Glukosestoffwechsel und Tumorwachstum

Leitthema

Zusammenfassung

Kohlenhydrate sind zentrale Bestandteile der menschlichen Ernährung. Ihre Rolle im Zusammenhang mit der Tumorentstehung und Tumorentwicklung ist von besonderem Interesse. Nach heutigem Erkenntnisstand kann davon ausgegangen werden, dass nutritive Kohlenhydrate als Risikofaktor für verschiedene Tumorerkrankungen betrachtet werden können.

Adipositas gilt als der wichtigste Risikofaktor für die Entstehung eines Typ-2-Diabetes. Von besonderem Interesse ist vonseiten der Epidemiologie die Frage, ob die bekannte Assoziation zwischen erhöhtem Körpergewicht und Diabetesprävalenz einen ähnlichen Confounding-Effekt bezüglich der Tumorprävalenz hat. Aufbauend auf die Hypothese, dass spezifische Veränderungen des intrazellulären Glukosestoffwechsels in kausalem Zusammenhang mit der unkontrollierten Proliferation von Zellen stehen können, entstand die Idee der nutritiven Intervention bzw. Kalorienrestriktion, um Entstehung und Wachstum von Tumoren zu vermeiden. Daher sind in den letzten Jahren signifikante Anstrengungen unternommen wurden, Substanzen zu identifizieren, die den metabolischen Zustand einer Kalorienrestriktion simulieren können, sog. Kalorienrestriktionsmimetika. Von Interesse ist auch die hypothetische Vorstellung, dass bestimmte Ernährungsformen (ketogene Diäten), die eine spezifische Reduktion des Kohlenhydratgehalts umfassen, gleichermaßen zu einer Reduktion der Tumorzellproliferation führen könnten.

Schlüsselwörter

Proliferation Glykolyse Respiration Glukose Mitochondrien 

Glucose metabolism and tumor growth

Abstract

Carbohydrates are an essential component of human nutrition. Their role in conjunction with tumorigenesis and tumor development is of particular interest. According to the current state of knowledge, it can be assumed that nutritive carbohydrates can be regarded as a risk factor for various tumor diseases.

Obesity is considered to be the most important risk factor for developing type 2 diabetes. From an epidemiological point of view, an interesting question is whether the known association between elevated body weight and diabetes prevalence has a similar confounding effect with respect to tumor prevalence. Based on the hypothesis that specific changes of intracellular glucose metabolism could be causally linked with uncontrolled proliferation of cells, the idea of nutritional intervention and caloric restriction arose with the aim of preventing the development and growth of tumors. In recent years considerable efforts have been expended to identify substances, which could simulate the metabolic state of caloric restriction, the so-called caloric restriction mimetics. Another intriguing hypothesis is that certain forms of nutrition (ketogenic diets), which include a specific reduction of carbohydrate content, could similarly lead to a reduction of tumor proliferation.

Keywords

Proliferation Glycolysis Respiration Glucose Mitochondria 

Literatur

  1. 1.
    Ashrafian H (2006) Cancer’s sweet tooth: the Janus effect of glucose metabolism in tumorigenesis. Lancet 367: 618–621PubMedCrossRefGoogle Scholar
  2. 2.
    Baggetto LG (1992) Deviant energetic metabolism of glycolytic cancer cells. Biochimie 74: 959–974PubMedCrossRefGoogle Scholar
  3. 3.
    Baron A, Migita T, Tang D, Loda M (2004) Fatty acid synthase: a metabolic oncogene in prostate cancer? J Cell Biochem 91: 47–53PubMedCrossRefGoogle Scholar
  4. 4.
    Bass TM, Weinkove D, Houthoofd K et al. (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128: 546–552PubMedCrossRefGoogle Scholar
  5. 5.
    Baur JA, Pearson KJ, Price NL et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444: 337–342PubMedCrossRefGoogle Scholar
  6. 6.
    Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5: 493–506PubMedCrossRefGoogle Scholar
  7. 7.
    Biesalski HK, Fürst P, Kasper H (2004) Ernährungsmedizin. 3rd edn. Thieme, StutgartGoogle Scholar
  8. 8.
    Bloch-Frankenthal L, Langan J, Morris HP, Weinhouse S (1965) Fatty acid oxidation and ketogenesis in transplantable liver tumors. Cancer Res 25: 732–736PubMedGoogle Scholar
  9. 9.
    Bonnet S, Archer SL, Allalunis-Turner J et al. (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11: 37–51PubMedCrossRefGoogle Scholar
  10. 10.
    Bowker SL, Majumdar SR, Veugelers P, Johnson JA (2006) Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29: 254–258PubMedCrossRefGoogle Scholar
  11. 11.
    Brand-Miller JC (2003) Glycemic load and chronic disease. Nutr Rev 61: S49–S55PubMedCrossRefGoogle Scholar
  12. 12.
    Carew JS, Huang P (2002) Mitochondrial defects in cancer. Mol Cancer 1: 9PubMedCrossRefGoogle Scholar
  13. 13.
    Chantelau E (2000) The glycemic index of carbohydrate foods: An update from a diabetologist’s perspective. Akt Ernaehr Med 25: 176–185Google Scholar
  14. 14.
    Chen D, Guarente L (2007) SIR2: a potential target for calorie restriction mimetics. Trends Mol Med 13: 64–71PubMedCrossRefGoogle Scholar
  15. 15.
    Copeland WC, Wachsman JT, Johnson FM, Penta JS (2002) Mitochondrial DNA alterations in cancer. Cancer Invest 20: 557–569PubMedCrossRefGoogle Scholar
  16. 16.
    Dorward A, Sweet S, Moorehead R, Singh G (1997) Mitochondrial contributions to cancer cell physiology: redox balance, cell cycle, and drug resistance. J Bioenerg Biomembr 29: 385–392PubMedCrossRefGoogle Scholar
  17. 17.
    Eng C, Kiuru M, Fernandez MJ, Aaltonen LA (2003) A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3: 193–202PubMedCrossRefGoogle Scholar
  18. 18.
    Esteban MA, Maxwell PH (2005) HIF, a missing link between metabolism and cancer. Nat Med 11: 1047–1048PubMedCrossRefGoogle Scholar
  19. 19.
    Evans JM, Donnelly LA, Emslie-Smith AM et al. (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330: 1304–1305PubMedCrossRefGoogle Scholar
  20. 20.
    Flier JS (2004) Obesity wars: molecular progress confronts an expanding epidemic. Cell 116: 337–350PubMedCrossRefGoogle Scholar
  21. 21.
    Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20: 1657–1666PubMedCrossRefGoogle Scholar
  22. 22.
    Golshani S (1992) Insulin, growth factors, and cancer cell energy metabolism: an hypothesis on oncogene action. Biochem Med Metab Biol 47: 108–115PubMedCrossRefGoogle Scholar
  23. 23.
    Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866PubMedCrossRefGoogle Scholar
  24. 24.
    Guarente L (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444: 868–874PubMedCrossRefGoogle Scholar
  25. 25.
    Hardie DG (2003) Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology 144: 5179–5183PubMedCrossRefGoogle Scholar
  26. 26.
    Hardie DG, Hawley SA, Scott JW (2006) AMP-activated protein kinase–development of the energy sensor concept. J Physiol 574: 7–15PubMedCrossRefGoogle Scholar
  27. 27.
    Hervouet E, Godinot C (2006) Mitochondrial disorders in renal tumors. Mitochondrion 6: 105–117PubMedCrossRefGoogle Scholar
  28. 28.
    Higginbotham S, Zhang ZF, Lee IM et al. (2004) Dietary glycemic load and risk of colorectal cancer in the Women’s Health Study. J Natl Cancer Inst 96: 229–233PubMedCrossRefGoogle Scholar
  29. 29.
    Hoberman HD (1975) Is there a role for mitochondrial genes in carcinogenesis? Cancer Res 35: 3332–3335PubMedGoogle Scholar
  30. 30.
    Holm E, Hagmuller E, Staedt U et al. (1995) Substrate balances across colonic carcinomas in humans. Cancer Res 55: 1373–1378PubMedGoogle Scholar
  31. 31.
    Hwang JT, Kwak DW, Lin SK et al. (2007) Resveratrol induces apoptosis in chemoresistant cancer cells via modulation of AMPK signaling pathway. Ann N Y Acad Sci 1095: 441–448PubMedCrossRefGoogle Scholar
  32. 32.
    Ingram DK, Anson RM, Cabo R de et al. (2004) Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci 1019: 412–423PubMedCrossRefGoogle Scholar
  33. 33.
    Ingram DK, Zhu M, Mamczarz J et al. (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5: 97–108PubMedCrossRefGoogle Scholar
  34. 34.
    Jang M, Cai L, Udeani GO et al. (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275: 218–220PubMedCrossRefGoogle Scholar
  35. 35.
    Jelluma N, Yang X, Stokoe D et al. (2006) Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes. Mol Cancer Res 4: 319–330PubMedCrossRefGoogle Scholar
  36. 36.
    Jenkins DJ, Kendall CW, Augustin LS et al. (2002) Glycemic index: overview of implications in health and disease. Am J Clin Nutr 76: 266S–273SPubMedGoogle Scholar
  37. 37.
    Kahn CR (1994) Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43: 1066–1084PubMedCrossRefGoogle Scholar
  38. 38.
    Kang HT, Hwang ES (2006) 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78: 1392–1399PubMedCrossRefGoogle Scholar
  39. 39.
    Kasper H (2004) Ernährungsmedizin und Diätetik. 10th edn. Urban & Fischer, München JenaGoogle Scholar
  40. 40.
    Kendall CW, Augustin LS, Emam A et al. (2006) The glycemic index: methodology and use. Nestle Nutr Workshop Ser Clin Perform Programme 11: 43–53; discussion 53–56PubMedGoogle Scholar
  41. 41.
    Kim D, Nguyen MD, Dobbin MM et al. (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26: 3169–3179PubMedCrossRefGoogle Scholar
  42. 42.
    Klotz LO, Venkataswaram V, Haddad A, Fleshner N (2005) An „Atkins“ style high fat-low carbohydrate diet inhibits proliferation of prostate cancer in a xenograft model. Paper presented at: 2005 Prostate Cancer Symposium (American Society of Clinical Oncology (ASCO))Google Scholar
  43. 43.
    Kuhajda FP (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res 66: 5977–5980PubMedCrossRefGoogle Scholar
  44. 44.
    Kuhajda FP, Jenner K, Wood FD et al. (1994) Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci U S A 91: 6379–6383PubMedCrossRefGoogle Scholar
  45. 45.
    Lagouge M, Argmann C, Gerhart-Hines Z et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1091–1093CrossRefGoogle Scholar
  46. 46.
    Le Corre L, Chalabi N, Delort L et al. (2006) Differential expression of genes induced by resveratrol in human breast cancer cell lines. Nutr Cancer 56: 193–203CrossRefGoogle Scholar
  47. 47.
    Leclerc I, Silva Xavier G da, Rutter GA (2002) AMP- and stress-activated protein kinases: key regulators of glucose-dependent gene transcription in mammalian cells? Prog Nucleic Acid Res Mol Biol 71: 69–90PubMedGoogle Scholar
  48. 48.
    Limburg PJ, Vierkant RA, Fredericksen ZS et al. (2006) Clinically confirmed type 2 diabetes mellitus and colorectal cancer risk: a population-based, retrospective cohort study. Am J Gastroenterol 101: 1872–1879PubMedCrossRefGoogle Scholar
  49. 49.
    Lin SJ, Kaeberlein M, Andalis AA et al. (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418: 344–348PubMedCrossRefGoogle Scholar
  50. 50.
    Maschek G, Savaraj N, Priebe W et al. (2004) 2-deoxy-D-glucose increases the efficacy of adriamycin and paclitaxel in human osteosarcoma and non-small cell lung cancers in vivo. Cancer Res 64: 31–34PubMedCrossRefGoogle Scholar
  51. 51.
    Matoba S, Kang JG, Patino WD et al. (2006) p53 regulates mitochondrial respiration. Science 312: 1650–1653PubMedCrossRefGoogle Scholar
  52. 52.
    McBain JA, Eastman A, Nobel CS, Mueller GC (1997) Apoptotic death in adenocarcinoma cell lines induced by butyrate and other histone deacetylase inhibitors. Biochem Pharmacol 53: 1357–1368PubMedCrossRefGoogle Scholar
  53. 53.
    Michaud DS, Liu S, Giovannucci E et al. (2002) Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 94: 1293–1300PubMedGoogle Scholar
  54. 54.
    Michels KB, Solomon CG, Hu FB et al. (2003) Type 2 diabetes and subsequent incidence of breast cancer in the Nurses‘ Health Study. Diabetes Care 26: 1752–1758PubMedCrossRefGoogle Scholar
  55. 55.
    Motoshima H, Goldstein BJ, Igata M, Araki E (2006) AMPK and cell proliferation – AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol 574: 63–71PubMedCrossRefGoogle Scholar
  56. 56.
    Nijtmans LG, Artal SM, Grivell LA, Coates PJ (2002) The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59: 143–155PubMedCrossRefGoogle Scholar
  57. 57.
    Penta JS, Johnson FM, Wachsman JT, Copeland WC (2001) Mitochondrial DNA in human malignancy. Mutat Res 488: 119–133PubMedCrossRefGoogle Scholar
  58. 58.
    Petersen KF, Befroy D, Dufour S et al. (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300: 1140–1142PubMedCrossRefGoogle Scholar
  59. 59.
    Petersen KF, Dufour S, Befroy D et al. (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350: 664–671PubMedCrossRefGoogle Scholar
  60. 60.
    Petersen KF, Dufour S, Savage DB et al. (2007) The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci U S A 104: 12587–12594PubMedCrossRefGoogle Scholar
  61. 61.
    Petersen KF, Dufour S, Shulman GI (2005) Decreased insulin-stimulated ATP synthesis and phosphate transport in muscle of insulin-resistant offspring of type 2 diabetic parents. PLoS Med 2: e233PubMedCrossRefGoogle Scholar
  62. 62.
    Pfeiffer T, Schuster S (2005) Game-theoretical approaches to studying the evolution of biochemical systems. Trends Biochem Sci 30: 20–25PubMedCrossRefGoogle Scholar
  63. 63.
    Pfeiffer T, Schuster S, Bonhoeffer S (2001) Cooperation and competition in the evolution of ATP-producing pathways. Science 292: 504–507PubMedCrossRefGoogle Scholar
  64. 64.
    Preston TJ, Abadi A, Wilson L, Singh G (2001) Mitochondrial contributions to cancer cell physiology: potential for drug development. Adv Drug Deliv Rev 49: 45–61PubMedCrossRefGoogle Scholar
  65. 65.
    Richardson LC, Pollack LA (2005) Therapy insight: Influence of type 2 diabetes on the development, treatment and outcomes of cancer. Nat Clin Pract Oncol 2: 48–53PubMedCrossRefGoogle Scholar
  66. 66.
    Ristow M (2006) Oxidative metabolism in cancer growth. Curr Opin Clin Nutr Metab Care 9: 339–345PubMedCrossRefGoogle Scholar
  67. 67.
    Ristow M, Birringer M, Schulz T (2007) Prävention von Krankheiten und Steigerung der Lebenserwartung durch Karlorierestriktion. [Calorie Restriction Mediates Increased Disease Resistance and Life Expectancy]. Akt Ernaehr Med 32: 104–109CrossRefGoogle Scholar
  68. 68.
    Roden M (2005) Muscle triglycerides and mitochondrial function: possible mechanisms for the development of type 2 diabetes. Int J Obes (Suppl 2) (Lond) 29: S111–S115Google Scholar
  69. 69.
    Schienkiewitz A, Schulze MB, Hoffmann K et al. (2006) Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am J Clin Nutr 84: 427–433PubMedGoogle Scholar
  70. 70.
    Schulz TJ, Thierbach R, Voigt A et al. (2006) Induction of oxidative metabolism by mitochondrial frataxin inhibits cancer growth: Otto Warburg revisited. J Biol Chem 281: 977–981PubMedCrossRefGoogle Scholar
  71. 71.
    Schulz TJ, Zarse K, Voigt A et al. (in press) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab: DOI 10.1016/j.cmet.2007.1008.1011Google Scholar
  72. 72.
    Semenza GL, Artemov D, Bedi A et al. (2001) ‚The metabolism of tumours’: 70 years later. Novartis Found Symp 240: 251–260; discussion 260–254PubMedCrossRefGoogle Scholar
  73. 73.
    Shaw RJ (2006) Glucose metabolism and cancer. Curr Opin Cell Biol 18: 598–608PubMedCrossRefGoogle Scholar
  74. 74.
    Sieri S, Pala V, Brighenti F et al. (2007) Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr 86: 1160–1166PubMedGoogle Scholar
  75. 75.
    Singh D, Banerji AK, Dwarakanath BS et al. (2005) Optimizing cancer radiotherapy with 2-deoxy-d-glucose dose escalation studies in patients with glioblastoma multiforme. Strahlenther Onkol 181: 507–514PubMedCrossRefGoogle Scholar
  76. 76.
    Singh KK (2004) Mitochondrial dysfunction is a common phenotype in aging and cancer. Ann N Y Acad Sci 1019: 260–264PubMedCrossRefGoogle Scholar
  77. 77.
    Spiegelman BM, Flier JS (1996) Adipogenesis and obesity: rounding out the big picture. Cell 87: 377–389PubMedCrossRefGoogle Scholar
  78. 78.
    Spiegelman BM, Flier JS (2001) Obesity and the regulation of energy balance. Cell 104: 531–543PubMedCrossRefGoogle Scholar
  79. 79.
    Stacpoole PW (1989) The pharmacology of dichloroacetate. Metabolism 38: 1124–1144PubMedCrossRefGoogle Scholar
  80. 80.
    Stine KE (2003) On-line review: Energy metabolism and cancerGoogle Scholar
  81. 81.
    Stryer L (1995) Biochemistry. Freeman and Company, New YorkGoogle Scholar
  82. 82.
    Szendroedi J, Schmid AI, Chmelik M et al. (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. PLoS Med 4: e154PubMedCrossRefGoogle Scholar
  83. 83.
    Thierbach R, Schulz TJ, Isken F et al. (2005) Targeted disruption of hepatic frataxin expression causes impaired mitochondrial function, decreased life span, and tumor growth in mice. Hum Mol Genet 14: 3857–3864PubMedCrossRefGoogle Scholar
  84. 84.
    Thoreen CC, Sabatini DM (2005) AMPK and p53 help cells through lean times. Cell Metab 1: 287–288PubMedCrossRefGoogle Scholar
  85. 85.
    Tisdale MJ, Brennan RA, Fearon KC (1987) Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer 56: 39–43PubMedGoogle Scholar
  86. 86.
    Tronstad KJ, Gjertsen BT, Krakstad C et al. (2003) Mitochondrial-targeted fatty acid analog induces apoptosis with selective loss of mitochondrial glutathione in promyelocytic leukemia cells. Chem Biol 10: 609–618PubMedCrossRefGoogle Scholar
  87. 87.
    Ungvari Z, Orosz Z, Rivera A et al. (2007) Resveratrol increases vascular oxidative stress resistance. Am J Physiol Heart Circ Physiol 292: H2417–H2424PubMedCrossRefGoogle Scholar
  88. 88.
    Van de Sande T, Roskams T, Lerut E et al. (2005) High-level expression of fatty acid synthase in human prostate cancer tissues is linked to activation and nuclear localization of Akt/PKB. J Pathol 206: 214–219CrossRefGoogle Scholar
  89. 89.
    Vona-Davis L, Howard-McNatt M, Rose DP (2007) Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev 8: 395–408PubMedCrossRefGoogle Scholar
  90. 90.
    Warburg O (1930) The metabolism of tumours. Constable, LondonGoogle Scholar
  91. 91.
    Warburg O (1956a) On respiratory impairment in cancer cells. Science 124: 269–270PubMedGoogle Scholar
  92. 92.
    Warburg O (1956b) On the origin of cancer cells. Science 123: 309–314PubMedCrossRefGoogle Scholar
  93. 93.
    Warburg O, Posener K, Negelein E (1924) Über den Stoffwechsel der Tumoren (On metabolism of tumors). Biochem Z 152: 319–344Google Scholar
  94. 94.
    Warburg O, Wind F, Negelein E (1926) The metabolism of tumors in the body. J Gen Physiol 8: 519–530CrossRefGoogle Scholar
  95. 95.
    Weindruch R, Keenan KP, Carney JM et al. (2001) Caloric restriction mimetics: metabolic interventions. J Gerontol A Biol Sci Med Sci 56: 20–33PubMedGoogle Scholar
  96. 96.
    Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. C.C Thomas, Springfield, IllinoisGoogle Scholar
  97. 97.
    Weinhouse S, Langan J, Shatton JA, Morris HP (1973) Fatty acids as metabolic fuels of cancer cells. In: Wood JG (ed) Tumor lipids. American Oil Chemists Society Press, Chicago, pp 14–20Google Scholar
  98. 98.
    Zang M, Xu S, Maitland-Toolan KA et al. (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55: 2180–2191PubMedCrossRefGoogle Scholar
  99. 99.
    Zhang XD, Deslandes E, Villedieu M et al. (2006) Effect of 2-deoxy-D-glucose on various malignant cell lines in vitro. Anticancer Res 26: 3561–3566PubMedGoogle Scholar
  100. 100.
    Zhou W, Mukherjee P, Kiebish MA et al. (2007) The calorically restricted ketogenic diet, an effective alternative therapy for malignant brain cancer. Nutr Metab (London) 4: 5Google Scholar
  101. 101.
    Zhu Z, Jiang W, McGinley JN, Thompson HJ (2005) 2-Deoxyglucose as an energy restriction mimetic agent: effects on mammary carcinogenesis and on mammary tumor cell growth in vitro. Cancer Res 65: 7023–7030PubMedCrossRefGoogle Scholar
  102. 102.
    Zu XL, Guppy M (2004) Cancer metabolism: facts, fantasy, and fiction. Biochem Biophys Res Commun 313: 459–465PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Lehrstuhl für HumanernährungInstitut für Ernährungswissenschaften, Friedrich-Schiller-UniversitätJenaDeutschland

Personalised recommendations