Skip to main content
Log in

Neue Konzepte und Substanzen zur Radiosensibilisierung

New concepts and substances for radiosensitization

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die Entwicklung neuer Therapieformen im Bereich der kombinierten Radiochemotherapie ist ein wichtiger Bestandteil der Grundlagenforschung und angewandten Radiobiologieforschung. Ionisierende Strahlung schädigt nicht nur die DNA, sondern induziert ein breites Spektrum an Stressantworten in der bestrahlten Zelle und im Tumor, die unabhängig von der eigentlichen DNA-Schädigung auftreten. Nun stellen sowohl Signalkaskaden, die von der DNA-Schädigung ausgehen, als auch biologische Prozesse, die entfernt von der DNA durch ionisierende Strahlung induziert werden, neue Zielstrukturen für hoch spezifische Substanzen dar, um die Zelle für die ionisierende Strahlung zu sensibilisieren. In diesem Übersichtsartikel werden neue Konzepte anhand der klassischen „4 R“ der Radiobiologie vorgestellt und diskutiert.

Abstract

A tremendous effort in basic and translational radiobiological research exists to identify new treatment modalities using ionizing radiation in combination with novel anticancer agents. Ionizing radiation not only damages DNA, but also affects multiple cellular components that induce a multi-layered stress response. These treatment responses can be restricted to the individual cell level but could also be part of an intercellular stress communication network. Both DNA damage induced signaling (which results in cell cycle arrest and the induction of the DNA repair machinery) and also ionizing radiation induced signal transduction cascades, which are generated at cellular sites distant from and independent of DNA damage, represent interesting targets for anticancer treatment modalities for sensitization to ionizing radiation. In this review, we describe current approaches for sensitizing tumor cells with novel anticancer agents along the lines of the classical 4 R’s of radiobiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Ang KK, Berkey BA, Tu X et al. (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62: 7350–7356

    PubMed  Google Scholar 

  2. Bentzen SM (2005) Radiation therapy: intensity modulated, image guided, biologically optimized and evidence based. Radiother Oncol 77: 227–230

    Article  PubMed  Google Scholar 

  3. Bentzen SM (2005) Theragnostic imaging for radiation oncology: dose-painting by numbers. Lancet Oncol 6: 112–117

    Google Scholar 

  4. Bernier J, Fuks Z (2004) Advances in translational radiation oncology: from molecular signaling to cancer cure. Int J Radiat Oncol Biol Phys 58: 305–306

    Article  PubMed  Google Scholar 

  5. Bernier J, Hall EJ, Giaccia A (2004) Radiation oncology: a century of achievements. Nat Rev Cancer 4: 737–747

    Article  PubMed  Google Scholar 

  6. Bonner JA, Harari PM, Giralt J et al. (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354: 567–578

    Article  PubMed  Google Scholar 

  7. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59: 5863–5870

    PubMed  Google Scholar 

  8. Eicheler W, Krause M, Hessel F et al. (2005) Kinetics of EGFR expression during fractionated irradiation varies between different human squamous cell carcinoma lines in nude mice. Radiother Oncol 76: 151–156

    Article  PubMed  Google Scholar 

  9. Eriksen JG, Steiniche T, Overgaard J (2005) The role of epidermal growth factor receptor and E-cadherin for the outcome of reduction in the overall treatment time of radiotherapy of supraglottic larynx squamous cell carcinoma. Acta Oncol 44: 50–58

    PubMed  Google Scholar 

  10. Hall EJ (2000) Radiobiology for the radiologist. Vol. 5th edn. Lippincott Williams and Wilkins

  11. Hardcastle IR, Cockcroft X, Curtin NJ et al. (2005) Discovery of potent chromen-4-one inhibitors of the DNA-dependent protein kinase (DNA-PK) using a small-molecule library approach. J Med Chem 48: 7829–7846

    Article  PubMed  Google Scholar 

  12. Hess C, Vuong V, Hegyi I et al. (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85: 2010–2016

    Article  PubMed  Google Scholar 

  13. Hofstetter B, Vuong V, Broggini-Tenzer A et al. (2005) Patupilone acts as radiosensitizing agent in multidrug-resistant cancer cells in vitro and in vivo. Clin Cancer Res 11: 1588–1596

    Article  PubMed  Google Scholar 

  14. Huang SM, Harari PM (2000) Modulation of radiation response after epidermal growth factor receptor blockade in squamous cell carcinomas: inhibition of damage repair, cell cycle kinetics, and tumor angiogenesis. Clin Cancer Res 6: 2166–2174

    PubMed  Google Scholar 

  15. Ismail IH, Martensson S, Moshinsky D et al. (2004) SU11752 inhibits the DNA-dependent protein kinase and DNA double-strand break repair resulting in ionizing radiation sensitization. Oncogene 23: 873–882

    Article  PubMed  Google Scholar 

  16. Jackson JR, Gilmartin A, Imburgia C et al. (2000) An indolocarbazole inhibitor of human checkpoint kinase (Chk1) abrogates cell cycle arrest caused by DNA damage. Cancer Res 60: 566–572

    PubMed  Google Scholar 

  17. Kashishian A, Douangpanya H, Clark D et al. (2003) DNA-dependent protein kinase inhibitors as drug candidates for the treatment of cancer. Mol Cancer Ther 2: 1257–1264

    PubMed  Google Scholar 

  18. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432: 316–323

    Article  PubMed  Google Scholar 

  19. Moshous D, Callebaut I, de Chasseval R et al. (2001) Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 105: 177–186

    Article  PubMed  Google Scholar 

  20. Overgaard J (1989) Sensitization of hypoxic tumour cells – clinical experience. Int J Radiat Biol 56: 801–811

    PubMed  Google Scholar 

  21. Riesterer O, Honer M, Jochum W et al. (2006) Ionizing Radiation Antagonizes Tumor Hypoxia Induced by Anti-Angiogenic Treatment. Submitted

  22. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297: 547–551

    Article  PubMed  Google Scholar 

  23. Russell JS, Brady K, Burgan WE et al. (2003) Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res 63: 7377–7383

    PubMed  Google Scholar 

  24. Wachsberger P, Burd R, Dicker AP (2003) Tumor response to ionizing radiation combined with antiangiogenesis or vascular targeting agents: exploring mechanisms of interaction. Clin Cancer Res 9: 1957–1971

    PubMed  Google Scholar 

  25. Wang Q, Fan S, Eastman A et al. (1996) UCN-01: a potent abrogator of G2 checkpoint function in cancer cells with disrupted p53. J Natl Cancer Inst 88: 956–965

    Article  PubMed  Google Scholar 

  26. Westphal CH, Hoyes KP, Canman CE et al. (1998) Loss of atm radiosensitizes multiple p53 null tissues. Cancer Res 58: 5637–5639

    PubMed  Google Scholar 

  27. Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408: 433–439

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pruschy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pruschy, M. Neue Konzepte und Substanzen zur Radiosensibilisierung. Onkologe 13, 263–268 (2007). https://doi.org/10.1007/s00761-007-1187-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-007-1187-y

Schlüsselwörter

Keywords

Navigation