Skip to main content
Log in

Einsatz der PET-CT zur Verbesserung der Bestrahlungsplanung nichtkleinzelliger Bronchialkarzinome

The use of PET-CT for the improvement of planning radiation therapy in non-small cell bronchial cancer

  • Update Onkologie
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die Fusion anatomischer und funktioneller Daten stellt für die Bestrahlungsplanung nichtkleinzelliger Bronchialkarzinome einen großen Fortschritt dar. Damit ist es möglich, bei Patienten mit bisher nicht detektierten Fernmetastasen toxische Therapiestrategien zu vermeiden und Kosten zu sparen. Für die Anwendung neoadjuvanter Therapiekonzepte kann mittels der funktionellen Daten schon während der Therapie eine Aussage über das Ansprechen des Tumors und den Benefit für den Patienten getroffen werden. Die Implementierung der PET-CT in die Bestrahlungsplanung führt zu einer exakteren Zielvolumendefinition durch bessere Detektion vorhandener mediastinaler Lymphknotenmetastasen, die verbesserte Abgrenzbarkeit des Primärtumors und die Unterscheidung von Tumor und Atelektase sowie einer Verminderung der Interobserver-Variabilität in der Festlegung des Zielvolumens. Ob diese Verbesserungen sich in eine verbesserte lokale Kontrolle umsetzen lassen, muss in weiteren Untersuchungen gezeigt werden.

Abstract

The fusion of anatomical and functional data is a major advance in the planning of radiation therapy for non-small cell lung cancer. It is thus possible to avoid toxic therapy strategies in patients with previously undetected distant metastases and to reduce costs. For the use of neoadjuvant therapy concepts, evidence of influence on the tumor and benefit for the patient can already be determined from the functional data during therapy. Implementation of the PET-CT in radiotherapy planning leads to an exact target volume definition via the better detection of existing mediastinal lymph node metastases, the improved demarcation of the primary tumor, and the differentiation between tumor and atelectasis, as well as a reduction in intra-observer variation in defining the target volume. Whether these improvements will also allow improved local control must be determined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6 a–c

Literatur

  1. Alzahouri K, Lejeune C, Woronoff-Lemsi MC, Arveux P, Guillemin F (2005) Cost-effectiveness analysis of strategies introducing FDG-PET into the mediastinal staging of non-small-cell lung cancer from the French healthcare system perspective. Clin Radiol 60:479–492

    Article  CAS  PubMed  Google Scholar 

  2. Antoch G, Stattaus J, Nemat AT, Marnitz S, Beyer T, Kuehl H, Bockisch A, Debatin JF, Freudenberg LS (2003) Non-small cell lung cancer: dual-modality PET/CT in preoperative staging. Radiology 229:526–533

    PubMed  Google Scholar 

  3. Bradley J, Thorstad WL, Mutic S, Miller TR, Dehdashti F, Siegel BA, Bosch W, Bertrand RJ (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59:78–86

    Article  PubMed  Google Scholar 

  4. Brundage MD, Davies D, Mackillop WJ (2002) Prognostic factors in non-small-cell lung cancer: a decade of progress. Chest 122:1037–1057

    Article  PubMed  Google Scholar 

  5. Bury T, Paulus P, Dowlati A, Corhay JL, Weber T, Ghaye B, Schoffers J, Limet R, Albert A, Rigo P, Radermecker M (1996) Staging of the mediastinum: value of positron emission tomography imaging in non-small cell lung cancer. Eur Respir J 9:2560–2564

    Article  CAS  PubMed  Google Scholar 

  6. Cancer Facts and Figures (2005) www.cancer.org

  7. Gandara DR, Leigh B, Vallieres E, Albain KS (1999) Preoperative chemotherapy in stage III non small cell lung cancer: long term outcome. Lung Cancer 26:3–6

    Article  CAS  PubMed  Google Scholar 

  8. Erdi YE, Rosenzweig K, Erdi AK et al. (2002) Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 62:51–60

    Article  PubMed  Google Scholar 

  9. Graham MV, Purdy JA, Emami B, Harms W, Bosch W, Lockett MA, Perez CA (1999) Clinical dose-volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329

    Article  CAS  PubMed  Google Scholar 

  10. Gupta NC, Graeber GM, Bishop HA (2000) Comparative efficiacy of positron emission tomography with fluorodeoxyglucose in evaluation of small (< 1 cm), intermediate (1 to 3 cm), and large (> 3 cm) lymph node lesions. Chest 117:773–778

    Article  CAS  PubMed  Google Scholar 

  11. Ishikura S, Ohe Y, Nihei K, Kubota K, Kakinuma R, Ohmatsu H, Goto K, Niho S, Nishiwaki Y, Ogino T (2005) phase II study of hyperfractionated accelerated radiotherapy (HART) after induction cisplatin (CDDP) and vinorelbine (VNR) for stage III non-small-cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 61:1117–1122

    Article  CAS  PubMed  Google Scholar 

  12. Kiffer JD, Berlangieri SU, Scott AM, Quong G, Feigen M, Schumer W, Clarke CP, Knight SR, Daniel FJ (1998) The contribution of 18F-fluoro-2-deoxy-glucose positron emission tomographic imaging to radiotherapy planning in lung cancer. Lung Cancer 19:167–177

    Article  CAS  PubMed  Google Scholar 

  13. Kwa SL, Lebesque JV, Theuws JC et al. (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9

    Article  CAS  PubMed  Google Scholar 

  14. Liu HH, Wang X, Dong L, Wu Q, Liao Z, Stevens CW, Guerrero TM, Komaki R, Cox JD, Mohan R (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58:1268–1279

    Article  PubMed  Google Scholar 

  15. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE, Tirona R (2002) The impact of (18)FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Biol Phys 52:339–350

    Article  PubMed  Google Scholar 

  16. Marnitz S, Stuschke M, Bohsung J, Moys A, Reng I, Wurm R, Budach V (2002) Intraindividual comparison of conventional three-dimensional radiotherapy and intensity modulated radiotherapy in the therapy of locally advanced non-small cell lung cancer a planning study. Strahlenther Onkol 178:651–658

    Article  PubMed  Google Scholar 

  17. Muller A, Stratmann-Schone D, Klose T, Leidl R (2002) Overview of economic evaluation of positron-emission tomography. Eur J Health Econ 3:59–65.

    Article  CAS  PubMed  Google Scholar 

  18. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, Hellwig D, Niewald M, Ukena D, Kirsch CM, Sybrecht GW, Schnabel K (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen VH, Peloquin S, Lacasse Y (2005) Cost-effectiveness of positron emission tomography for the management of potentially operable non-small cell lung cancer in Quebec. Can Respir J 12:19–25

    PubMed  Google Scholar 

  20. Pieterman RM, van Putten JWG, Meuzelaar JJ et al. (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. NEJM 343:254–261

    Article  CAS  PubMed  Google Scholar 

  21. Rosenzweig KE, Mychalczak B, Fuks Z et al. (2000) Final report of the 70.2-Gy and 75.6-Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 6:82–87

    CAS  PubMed  Google Scholar 

  22. Sasaki M, Ichiya Y, Kuwabara Y et al. (1996) The usefulness of FDG positron emission tomography for the detection of mediastinal lymph node metastases in patients with non-small cell lung cancer: a comparative study with X-ray computed tomography. Eur J Nucl Med 23:741–747

    Article  CAS  PubMed  Google Scholar 

  23. Schmücking M, Baum RP, Bonnet R, Junker K, Müller KM (2005) Korrelation histologischer und nuklearmedizinischer Befunde der Tumorregression in behandelten bösartigen Lungentumoren. Pathologe (Epub ahead of print)

  24. van Der Wel A, Nijsten S, Hochstenbag M et al. (2005) Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. Int J Radiat Oncol Biol Phys 61:649–655

    Article  PubMed  Google Scholar 

  25. Vanuytsel LJ, Vansteenkiste JF, Stroobants SG et al. (2000) The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer. Radioth Oncol 55:317–324

    Article  CAS  Google Scholar 

  26. Wahl RL, Quint LE, Greenough RL, Meyer CR, White RI, Orringer MB (1999) Staging of mediastinal non-small cell lung cancer with FDG PET, CT, and fusion images: preliminary prospective evaluation. Radiology 191:371–377

    Google Scholar 

  27. Weng E, Tran L, Rege S et al. (2000) Accuracy and clinical impact of mediastinal lymph node staging with FDG-PET imaging in potentially resectable lung cancer. Am J Clin Oncol 23:47–52

    Article  CAS  PubMed  Google Scholar 

  28. Willner J, Baier K, Caragiani E, Tschammler A, Flentje M (2002) Dose, volume, and tumor control prediction in primary radiotherapy of non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 52:382–389

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Keine Angaben

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marnitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marnitz, S., Messer, P., Stuschke, M. et al. Einsatz der PET-CT zur Verbesserung der Bestrahlungsplanung nichtkleinzelliger Bronchialkarzinome. Onkologe 11, 859–865 (2005). https://doi.org/10.1007/s00761-005-0914-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-005-0914-5

Schlüsselwörter

Keywords

Navigation