Skip to main content

Advertisement

Log in

Immuntherapie gastrointestinaler Tumoren

Immunotherapy for gastrointestinal tumours

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die kritische Auswertung der innerhalb der letzten Jahre erarbeiteten Daten zur Immuntherapie des Magen- und des kolorektalen Karzinoms eröffnet Möglichkeiten, das Wachstum und die metastatische Dissemination dieser Tumoren immunologisch zu modifizieren. Die molekulare Charakterisierung tumorassoziierter Antigene (TAA) schreitet schnell voran. Damit erweitert sich das Spektrum potenzieller Ziele einer Immuntherapie und schafft die Möglichkeit, moderne Techniken zum Monitoring der gegen sie gerichteten Antikörper und T-Zell-Antworten anzuwenden. Somit sind die Untersuchungen zur Immuntherapie auf diesem Gebiet als Erfolg zu werten. Dennoch sind die klinischen Fortschritte sowohl für das Magen- wie auch für das kolorektale Karzinom begrenzt. Erfahrungen aus der Melanomvakzinierung, die Entwicklung neuer Generationen wirkungsvollerer Antitumorvakzine, neuer Adjuvantien (dendritische Zellen: DC, Hitzeschockprotein: HSP) und chemisch modifizierter antigener Peptide weisen aber den Weg zu einer verbesserten Immuntherapie durch Verstärkung der tumoreigenen Immunogenität. Eine Chance könnte hierbei insbesondere in der T-Zell-basierten Immuntherapie liegen.

Abstract

A critical evaluation of immunotherapeutic data on stomach and colorectal carcinoma acquired over the last several years has provided some support for new strategies allowing immunological modification of the growth and metastatic dissemination of these tumors. Moreover, the molecular characterization of tumor associated antigens expressed by stomach and colorectal carcinomas is rapidly progressing, expanding the spectrum of potential targets on cancer cells recognized by the immune system, and allowing researchers to employ modern techniques to monitor antibody and T cell responses against them. Despite the limited success of immunotherapy in clinical trials on stomach and colorectal carcinomas, there is a growing knowledge of the immune system and its molecular mechanisms. These advances, together with the experience obtained in clinical trials studying anti-tumor vaccination in melanoma patients, should allow the design of a new generation of more effective anti-tumor vaccines, based on new immunological adjuvants (DC, HSP), as well on the chemical modification of antigenic peptides to increase their immunogenicity. A T cell based immunotherapy might be considered as a new treatment option against stomach and colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Lissoni P, Barni S, Tancini G, Ardizzoia A, Rovelli F, Cazzaniga M, Brivio, F, Piperno A, Aldeghi R, Fossati D et al. (1993) Immunotherapy with subcutaneous low-dose interleukin-2 and the pineal indole melatonin as a new effective therapy in advanced cancers of the digestive tract. Br J Cancer 67:1404–1407

    Google Scholar 

  2. Romano F, Piacentini MG, Franciosi C, Caprotti R, De Fina S, Cesana G, Uggeri F, Conti M (2004) Phase-II randomized study of preoperative IL-2 administration in radically operable gastric cancer patients. Hepatogastroenterology 51:1872–1876

    Google Scholar 

  3. Romano F, Cesana G, Berselli M, Gaia Piacentini M, Caprotti R, Bovo G, Uggeri F (2004) Biological, histological, and clinical impact of preoperative IL-2 administration in radically operable gastric cancer patients. J Surg Oncol 88:240–247

    Google Scholar 

  4. Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T, Matsumoto Y (2002) Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: a randomized trial. Clin Cancer Res 8:1767–1771

    Google Scholar 

  5. Mashino K, Sadanaga N, Tanaka F, Yamaguchi H, Nagashima H, Inoue H, Sugimachi K, Mori M (2001) Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br J Cancer 85:713–720

    Google Scholar 

  6. Sato Y, Shomura H, Maeda Y et al. (2003) Immunological evaluation of peptide vaccination for patients with gastric cancer based on pre-existing cellular response to peptide. Cancer Sci 94:802–808

    Google Scholar 

  7. Sasada T, Takedatsu H, Azuma K, Koga M, Maeda Y, Shichijo S, Shoumura H, Hirai T, Takabayashi A, Itoh K (2004) Immediate early response gene X-1, a stress-inducible antiapoptotic gene, encodes cytotoxic T-lymphocyte (CTL) epitopes capable of inducing human leukocyte antigen-A33-restricted and tumor-reactive CTLs in gastric cancer patients. Cancer Res 64:2882–2888

    Google Scholar 

  8. Shibata M, Nezu T, Fujisaki S, Andou K, Tomita R, Fukuzawa M (2002) Clinical potential of biological response modifiers combined with chemotherapy for gastric cancer. Japanese experience. Dig Surg 19:255–260

    Google Scholar 

  9. Tanaka N, Gouchi A, Ohara T, Mannami T, Konaga E, Fuchimoto S, Okamura S, Sato K, Orita K (1994) Intratumoral injection of a streptococcal preparation, OK-432, before surgery for gastric cancer. A randomized trial. Cooperative Study Group of Preoperative Intratumoral Immunotherapy for Cancer. Cancer 74:3097–3103

    Google Scholar 

  10. Gochi A, Orita K, Fuchimoto S, Tanaka N, Ogawa N (2001) The prognostic advantage of preoperative intratumoral injection of OK-432 for gastric cancer patients. Br J Cancer 84:443–451

    Google Scholar 

  11. Kim SY, Park HC, Yoon C, Yoon HJ, Choi YM, Cho KS (1998) OK-432 and 5-fluorouracil, doxorubicin, and mitomycin C (FAM-P) versus FAM chemotherapy in patients with curatively resected gastric carcinoma: a randomized Phase III trial. Cancer 83:2054–2059

    Google Scholar 

  12. Sakamoto J, Teramukai S, Nakazato H, Sato Y, Uchino J, Taguchi T, Ryoma Y, Ohashi Y (2002) Efficacy of adjuvant immunochemotherapy with OK-432 for patients with curatively resected gastric cancer: a meta-analysis of centrally randomized controlled clinical trials. J Immunother 25:405–412

    Google Scholar 

  13. Watson SA, Michaeli D, Grimes S, Morris TM, Varro A, Clarke PA, Smith AM, Justin TA, Hardcastle JD (1999) A comparison of an anti-gastrin antibody and cytotoxic drugs in the therapy of human gastric ascites in SCID mice. Int J Cancer 81:248–254

    Google Scholar 

  14. Gilliam AD, Watson SA, Henwood M, McKenzie AJ, Humphreys JE, Elder J, Iftikhar SY, Welch N, Fielding J, Broome P, Michaeli D (2004) A phase II study of G17DT in gastric carcinoma. Eur J Surg Oncol 30:536–543

    Google Scholar 

  15. Houshmand P, Zlotnik A (2003) Targeting tumor cells. Curr Opin Cell Biol 15:640–644

    Google Scholar 

  16. Ajani JA, Kelsen DP, Haller D, Hargraves K, Healey D (2000) A multi-institutional phase II study of BMS-182248–01 (BR96-doxorubicin conjugate) administered every 21 days in patients with advanced gastric adenocarcinoma. Cancer J 6:78–81

    Google Scholar 

  17. Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, Okuwa M, Matsumoto S, Miyata Y, Ohkura H, Chin K, Baba S, Yamao T, Kannami A, Takamatsu Y, Ito K, Takahashi K (2004) Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Ann Oncol 15:517–525

    Google Scholar 

  18. Shimizu K, Kubo H, Yamaguchi K, Kawashima K, Ueda Y, Matsuo K, Awane M, Shimahara Y, Takabayashi A, Yamaoka Y, Satoh S (2004) Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci 95:328–333

    Google Scholar 

  19. Kono K, Takahashi A, Ichihara F, Sugai H, Fujii H, Matsumoto Y (2002) Impaired antibody-dependent cellular cytotoxicity mediated by herceptin in patients with gastric cancer. Cancer Res 62:5813–5817

    Google Scholar 

  20. Illert B, Fein M, Otto C, Cording F, Stehle D, Thiede A, Timmermann W (2005) Disseminated tumor cells in the blood of patients with gastric cancer are an independent marker of poor prognosis. Scand J Gastroenterol (im Druck)

  21. Illert B, Otto C, Vollmers H, Hensel F, Thiede A, Timmermann W (2005) Human antibody SC-1 reduces disseminated tumor cells in nude mice with human gastric cancer. Oncol Rep (im Druck)

  22. Timmermann W, Illert B, Reindl L, Ruckle-Lanz H, Wilhelm M, Hensel F, Vollmers H, Muller-Hermelink H, Coquoz D, Thiede A (2004) Prognostic effect of CD55-SC-1 in gastric carcinoma (GC) and survival after treatment with the monoclonal antibody SC-1. American Society of Clinical Oncology. Annual Proceedings of the 40th ASCO Meeting 23, Abstract 4067

  23. Schwartzberg LS (2001) Clinical experience with edrecolomab: a monoclonal antibody therapy for colorectal carcinoma. Crit Rev Oncol Hematol 40:17–24

    Google Scholar 

  24. Sears HF, Herlyn D, Steplewski Z, Koprowski H (1985) Phase II clinical trial of a murine monoclonal antibody cytotoxic for gastrointestinal adenocarcinoma. Cancer Res 45:5910–5913

    Google Scholar 

  25. Masucci G, Ragnhammar P, Frodin JE, Hjelm AL, Wersall P, Fagerberg J, Osterborg A, Mellstedt H (1991) Chemotherapy and immunotherapy of colorectal cancer. Med Oncol Tumor Pharmacother 8:207–220

    Google Scholar 

  26. Hjelm Skog A, Ragnhammar P, Fagerberg J et al. (1999) Clinical effects of monoclonal antibody 17–1A combined with granulocyte/macrophage-colony-stimulating factor and interleukin-2 for treatment of patients with advanced colorectal carcinoma. Cancer Immunol Immunother 48:463–470

    Google Scholar 

  27. Riethmuller G, Holz E, Schlimok G et al. (1998) Monoclonal antibody therapy for resected Dukes‘ C colorectal cancer: seven-year outcome of a multicenter randomized trial. J Clin Oncol 16:1788–1794

    Google Scholar 

  28. Punt CJ, Nagy A, Douillard JY et al. (2002) Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet 360:671–677

    Google Scholar 

  29. Mack M, Riethmuller G, Kufer P (1995) A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA 92:7021–7025

    Google Scholar 

  30. Helfrich W, Kroesen BJ, Roovers RC, Westers L, Molema G, Hoogenboom HR, de Leij L (1998) Construction and characterization of a bispecific diabody for retargeting T cells to human carcinomas. Int J Cancer 76:232–239

    Google Scholar 

  31. Holliger P, Manzke O, Span M, Hawkins R, Fleischmann B, Qinghua L, Wolf J, Diehl V, Cochet O, Winter G, Bohlen H (1999) Carcinoembryonic antigen (CEA)-specific T-cell activation in colon carcinoma induced by anti-CD3 x anti-CEA bispecific diabodies and B7 x anti-CEA bispecific fusion proteins. Cancer Res 59:2909–2916

    Google Scholar 

  32. Spaulding DC, Spaulding BO (2002) Epidermal growth factor receptor expression and measurement in solid tumors. Semin Oncol 29:45–54

    Google Scholar 

  33. Goldstein NS, Armin M (2001) Epidermal growth factor receptor immunohistochemical reactivity in patients with American Joint Committee on Cancer Stage IV colon adenocarcinoma: implications for a standardized scoring system. Cancer 92:1331–1346

    Google Scholar 

  34. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Google Scholar 

  35. Ellis LM, Hoff PM (2004) Targeting the epidermal growth factor receptor: an important incremental step in the battle against colorectal cancer. J Clin Oncol 22 1177–1179

    Google Scholar 

  36. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ (2004) Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208

    Google Scholar 

  37. Lenz HJ, Mayer RJ, Gold PJ (2004) Activity of cetuximab in patients with colorectal cancer refrectory to both irinotecan and oxaliplatin. Proc Am Soc Clin Oncol 23:248

    Google Scholar 

  38. Baselga J (2001) The EGFR as a target for anticancer therapy--focus on cetuximab. Eur J Cancer 37 [Suppl 4]:S16–22

    Google Scholar 

  39. Herbst RS, Langer CJ (2002) Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol 29:27–36

    Google Scholar 

  40. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Google Scholar 

  41. Foon KA, Yannelli J, Bhattacharya-Chatterjee M (1999) Colorectal cancer as a model for immunotherapy. Clin Cancer Res 5:225–236

    Google Scholar 

  42. Schlom J, Tsang KY, Kantor JA, Abrams SI, Zaremba S, Greiner J, Hodge JW (1999) Strategies in the development of recombinant vaccines for colon cancer. Semin Oncol 26:672–682

    Google Scholar 

  43. Bremers AJ, Parmiani G (2000) Immunology and immunotherapy of human cancer: present concepts and clinical developments. Crit Rev Oncol Hematol 34:1–25

    Google Scholar 

  44. Zeh HJ, Stavely-O’Carroll K, Choti MA (2001) Vaccines for colorectal cancer. Trends Mol Med 7:307–313

    Google Scholar 

  45. Sobol RE, Shawler DL, Carson C et al. (1999) Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumor cells and genetically engineered fibroblasts: a Phase I study. Clin Cancer Res 5:2359–2365

    Google Scholar 

  46. Woodlock TJ, Sahasrabudhe DM, Marquis DM, Greene D, Pandya KJ, McCune CS (1999) Active specific immunotherapy for metastatic colorectal carcinoma: phase I study of an allogeneic cell vaccine plus low-dose interleukin-1 alpha. J Immunother 22:251–259

    Google Scholar 

  47. Habal N, Gupta RK, Bilchik AJ, Yee R, Leopoldo Z, Ye W, Elashoff RM, Morton DL (2001) CancerVax, an allogeneic tumor cell vaccine, induces specific humoral and cellular immune responses in advanced colon cancer. Ann Surg Oncol 8:389–401

    Google Scholar 

  48. Gray BN, Walker C, Andrewartha L, Freeman S, Bennett RC (1989) Controlled clinical trial of adjuvant immunotherapy with BCG and neuraminidase-treated autologous tumour cells in large bowel cancer. J Surg Oncol 40:34–37

    Google Scholar 

  49. Hoover HC Jr, Brandhorst JS, Peters LC, Surdyke MG, Takeshita Y, Madariaga J, Muenz LR, Hanna MG Jr (1993) Adjuvant active specific immunotherapy for human colorectal cancer: 6.5-year median follow-up of a phase III prospectively randomized trial. J Clin Oncol 11:390–399

    Google Scholar 

  50. Vermorken JB, Claessen AM, van Tinteren H et al. (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353:345–350

    Google Scholar 

  51. Harris JE, Ryan L, Hoover HC Jr, Stuart RK, Oken MM, Benson AB 3rd, Mansour E, Haller DG, Manola J, Hanna MG Jr (2000) Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group Study E5283. J Clin Oncol 18:148–157

    Google Scholar 

  52. Hanna MG Jr, Hoover HC, Jr, Vermorken JB, Harris JE, Pinedo HM (2001) Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine 19:2576–2582

    Google Scholar 

  53. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Google Scholar 

  54. Castelli C, Ciupitu AM, Rini F, Rivoltini L, Mazzocchi A, Kiessling R, Parmiani G (2001) Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res 61 222–227

    Google Scholar 

  55. Srivastava PK, Menoret A, Basu S, Binder RJ, McQuade KL (1998) Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity 8:657–665

    Google Scholar 

  56. Gilboa E (1999) The makings of a tumor rejection antigen. Immunity 11:263–270

    Google Scholar 

  57. Parmiani G, Castelli C, Dalerba P, Rivoltini L (2001) T cell response to tumor antigens and its therapeutic use in cancer patients. Adv Exp Med Biol 495:403–410

    Google Scholar 

  58. Mazzaferro V, Coppa J, Carrabba MG et al. (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245

    Google Scholar 

  59. Tsang KY, Zaremba S, Nieroda CA, Zhu MZ, Hamilton JM, Schlom J (1995) Generation of human cytotoxic T cells specific for human carcinoembryonic antigen epitopes from patients immunized with recombinant vaccinia-CEA vaccine. J Natl Cancer Inst 87:982–990

    Google Scholar 

  60. McAneny D, Ryan CA, Beazley RM, Kaufman HL (1996) Results of a phase I trial of a recombinant vaccinia virus that expresses carcinoembryonic antigen in patients with advanced colorectal cancer. Ann Surg Oncol 3:495–500

    Google Scholar 

  61. Marshall JL, Hawkins MJ, Tsang KY, Richmond E, Pedicano JE, Zhu MZ, Schlom J (1999) Phase I study in cancer patients of a replication-defective avipox recombinant vaccine that expresses human carcinoembryonic antigen. J Clin Oncol 17:332–337

    Google Scholar 

  62. Marshall JL, Hoyer RJ, Toomey MA, Faraguna K, Chang P, Richmond E, Pedicano JE, Gehan E, Peck RA, Arlen P, Tsang KY, Schlom J (2000) Phase I study in advanced cancer patients of a diversified prime-and-boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18:3964–3973

    Google Scholar 

  63. Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A., Park D, Tine J, Guito K, Tsang KW, Schlom J, Kaufman HL (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49:504–514

    Google Scholar 

  64. von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6:2219–2228

    Google Scholar 

  65. Morse MA, Deng Y, Coleman D, Hull S, Kitrell-Fisher E, Nair S, Schlom J, Ryback ME, Lyerly HK (1999) A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-1)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 5:1331–1338

    Google Scholar 

  66. Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG (2001) Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci USA 98:8809–8814

    Google Scholar 

  67. Staib L, Birebent B, Somasundaram R et al. (2001) Immunogenicity of recombinant GA733–2E antigen (CO17–1A, EGP, KS1–4, KSA, Ep-CAM) in gastro-intestinal carcinoma patients. Int J Cancer 92:79–87

    Google Scholar 

  68. Goydos JS, Elder E, Whiteside TL, Finn OJ, Lotze MT (1996) A phase I trial of a synthetic mucin peptide vaccine. Induction of specific immune reactivity in patients with adenocarcinoma. J Surg Res 63:298–304

    Google Scholar 

  69. Karanikas V, Thynne G, Mitchell P, Ong CS, Gunawardana D, Blum R, Pearson J, Lodding J, Pietersz G, Broadbent R, Tait B, McKenzie IF (2001) Mannan mucin-1 peptide immunization: influence of cyclophosphamide and the route of injection. J Immunother 24:172–183

    Google Scholar 

  70. Abrams SI, Khleif SN, Bergmann-Leitner ES, Kantor JA, Chung Y, Hamilton JM, Schlom J (1997) Generation of stable CD4+ and CD8+ T cell lines from patients immunized with ras oncogene-derived peptides reflecting codon 12 mutations. Cell Immunol 182:137–151

    Google Scholar 

  71. Khleif SN, Abrams SI, Hamilton JM, Bergmann-Leitner E, Chen A, Bastian A, Bernstein S, Chung Y, Allegra CJ, Schlom J (1999) A phase I vaccine trial with peptides reflecting ras oncogene mutations of solid tumors. J Immunother 22:155–165

    Google Scholar 

  72. Gjertsen MK, Bjorheim J, Saeterdal I, Myklebust J, Gaudernack G (1997) Cytotoxic CD4+ and CD8+ T lymphocytes, generated by mutant p21-ras (12Val) peptide vaccination of a patient, recognize 12Val-dependent nested epitopes present within the vaccine peptide and kill autologous tumour cells carrying this mutation. Int J Cancer 72:784–790

    Google Scholar 

  73. Miyagi Y, Imai N, Sasatomi T, Yamada A, Mine T, Katagiri K, Nakagawa M, Muto A, Okouchi S, Isomoto H, Shirouzu K, Yamana H, Itoh K (2001) Induction of cellular immune responses to tumor cells and peptides in colorectal cancer patients by vaccination with SART3 peptides. Clin Cancer Res 7:3950–3962

    Google Scholar 

  74. Sadanaga N, Nagashima H, Mashino K, Tahara K, Yamaguchi H, Ohta M, Fujie T, Tanaka F, Inoue H, Takesako K, Akiyoshi T, Mori M (2001) Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 7:2277–2284

    Google Scholar 

  75. Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13:147–153

    Google Scholar 

  76. Birebent B, Somasundaram R, Purev E et al. (2001) Anti-idiotypic antibody and recombinant antigen vaccines in colorectal cancer patients. Crit Rev Oncol Hematol 39:107–113

    Google Scholar 

  77. Lindemann F, Schlimok G, Dirschedl P, Witte J, Riethmuller G (1992) Prognostic significance of micrometastatic tumour cells in bone marrow of colorectal cancer patients. Lancet 340:685–689

    Google Scholar 

  78. Pantel K, Cote RJ, Fodstad O (1999) Detection and clinical importance of micrometastatic disease. J Natl Cancer Inst 91:1113–1124

    Google Scholar 

  79. Soeth E, Vogel I, Roder C, Juhl H, Marxsen J, Kruger U, Henne-Bruns D, Kremer B, Kalthoff H (1997) Comparative analysis of bone marrow and venous blood isolates from gastrointestinal cancer patients for the detection of disseminated tumor cells using reverse transcription PCR. Cancer Res 57:3106–3110

    Google Scholar 

  80. Guadagni F, Kantor J, Aloe S et al. (2001) Detection of blood-borne cells in colorectal cancer patients by nested reverse transcription-polymerase chain reaction for carcinoembryonic antigen messenger RNA: longitudinal analyses and demonstration of its potential importance as an adjunct to multiple serum markers. Cancer Res 61:2523–2532

    Google Scholar 

  81. Braun S, Hepp F, Kentenich CR, Janni W, Pantel K, Riethmuller G, Willgeroth F, Sommer HL (1999) Monoclonal antibody therapy with edrecolomab in breast cancer patients: monitoring of elimination of disseminated cytokeratin-positive tumor cells in bone marrow. Clin Cancer Res 5:3999–4004

    Google Scholar 

  82. Schirrmacher V (2001) T-cell immunity in the induction and maintenance of a tumour dormant state. Semin Cancer Biol 11:285–295

    Google Scholar 

  83. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Google Scholar 

  84. Kiessling R, Wasserman K, Horiguchi S, Kono K, Sjoberg J, Pisa P, Petersson M (1999) Tumor-induced immune dysfunction. Cancer Immunol Immunother 48:353–362

    Google Scholar 

  85. Gupta S, Seth SK, Udupa KN, Sen PC (1980) Delayed cutaneous hypersensitivity ad peripheral blood lymphocyte counts in gastrointestinal cancer. Ann Acad Med Singapore 9:71–76

    Google Scholar 

  86. Papatheodorou K, Triantafillidis JK, Kogevinas M, Manoussakis K, Nicolakis D, Merikas E (1994) Cutaneous delayed hypersensitivity in patients with colorectal cancer: application of multi-test. Ital J Gastroenterol 26:12–15

    Google Scholar 

  87. Huang A, Quinn H, Glover C, Henderson DC, Allen-Mersh TG (2002) The presence of interleukin-2 receptor alpha in the serum of colorectal cancer patients is unlikely to result only from T cell up-regulation. Cancer Immunol Immunother 51:53–57

    Google Scholar 

  88. Elsasser-Beile U, von Kleist S, Fischer R, Monting JS (1992) Impaired cytokine production in whole blood cell cultures from patients with colorectal carcinomas as compared to benign colorectal tumors and controls. J Clin Lab Anal 6:311–314

    Google Scholar 

  89. O’Hara RJ, Greenman J, Drew PJ, McDonald AW, Duthie GS, Lee PW, Monson JR (1998) Impaired interleukin-12 production is associated with a defective anti-tumor response in colorectal cancer. Dis Colon Rectum 41:460–463

    Google Scholar 

  90. Heriot AG, Marriott JB, Cookson S, Kumar D, Dalgleish AG (2000) Reduction in cytokine production in colorectal cancer patients: association with stage and reversal by resection. Br J Cancer 82:1009–1012

    Google Scholar 

  91. Matsuda M, Petersson M, Lenkei R, Taupin JL, Magnusson I, Mellstedt H, Anderson P, Kiessling R (1995) Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes: correlation with the stage of the disease. Int J Cancer 61:765–772

    Google Scholar 

  92. Choi SH, Chung EJ, Whang DY, Lee SS, Jang YS, Kim CW (1998) Alteration of signal-transducing molecules in tumor-infiltrating lymphocytes and peripheral blood T lymphocytes from human colorectal carcinoma patients. Cancer Immunol Immunother 45:299–305

    Google Scholar 

  93. Rabinowich H, Banks M, Reichert TE, Logan TF, Kirkwood JM, Whiteside TL (1996) Expression and activity of signaling molecules in T lymphocytes obtained from patients with metastatic melanoma before and after interleukin 2 therapy. Clin Cancer Res 2:1263–1274

    Google Scholar 

  94. O’Connell J, O’Sullivan GC, Collins JK, Shanahan F (1996) The Fas counterattack: Fas-mediated T cell killing by colon cancer cells expressing Fas ligand. J Exp Med 184:1075–1082

    Google Scholar 

  95. Favre-Felix N, Fromentin A, Hammann A, Solary E, Martin F, Bonnotte B (2000) Cutting edge: the tumor counterattack hypothesis revisited: colon cancer cells do not induce T cell apoptosis via the Fas (CD95, APO-1) pathway. J Immunol 164:5023–5027

    Google Scholar 

  96. Bandealy MT, Gonin R, Loehrer PJ, Monaco F, Einhorn LH (1998) Prospective randomized trial of 5-fluorouracil versus 5-fluorouracil plus levamisole in the treatment of metastatic colorectal cancer: a Hoosier Oncology Group trial. Clin Cancer Res 4:935–939

    Google Scholar 

  97. Rivoltini L, Radrizzani M, Accornero P, Squarcina P, Chiodoni C, Mazzocchi A, Castelli C, Tarsini P, Viggiano V, Belli F, Colombo MP, Parmiani G (1998) Human melanoma-reactive CD4+ and CD8+ CTL clones resist Fas ligand-induced apoptosis and use Fas/Fas ligand-independent mechanisms for tumor killing. J Immunol 161:1220–1230

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Meyer.

Additional information

D. Meyer und B. Illert — gleichberechtigte Erstautorenschaft

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, D., Illert, B., Timmermann, W. et al. Immuntherapie gastrointestinaler Tumoren. Onkologe 11, 518–529 (2005). https://doi.org/10.1007/s00761-005-0866-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-005-0866-9

Schlüsselwörter

Keywords

Navigation