Skip to main content
Log in

Impfstrategien zur Prävention oder Therapie von Tumoren

Vaccination strategies for the prevention and therapy of cancer

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Tumoren unterscheiden sich molekular von dem Gewebe, aus dem sie sich entwickeln, und können dadurch von Zellen des Immunsystems selektiv erkannt und zerstört werden. Die Identifikation einer großen Zahl von Antigenen, die ausschließlich oder präferenziell in Tumorzellen nachweisbar sind, bildet die molekulare Grundlage, auf der sich moderne Impfstrategien zur Prävention und Therapie von Krebserkrankungen entwickelt haben. Der vorliegende Artikel diskutiert die in den letzten Jahren in klinischen Studien zum Einsatz gekommenen Strategien und fasst den aktuellen Stand ihrer klinischen Prüfung zusammen. Hervorgehoben wird auch die Bedeutung von Surrogatmarkern zur immunologischen Erfolgskontrolle von Impfprotokollen.

Abstract

Tumors differ in their molecular composition from their tissue of origin. Tumor-specific molecular alterations lead to the expression and presentation of antigens that can be specifically recognized by immune effector cells. The identification of a large number of tumor-associated antigens provides the molecular basis for antigen-specific immunization protocols for the prevention as well as targeted therapy of cancer. This article reviews the different concepts for immunization and gives an update on the current status of clinical cancer immunotherapy trials using non-defined antigen mixtures or molecularly defined antigens. The importance of immunological surrogate markers for the optimization of vaccination schedules is explained. Given the potential as well as the current limitations of vaccination against cancer, strategies needed for the future are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Coley WB (1896) Further observations upon treatment of malignant tumors with the toxins of erysipelas and Bacillus prodigiosus with a report of 160 cases. Bull Johns Hopkins Hosp 7:157–162

    Google Scholar 

  2. Gross L (1943) Intradermal immunization of C3H mice against sarcoma that originated in an animal of the same line. Cancer Res 3:326–333

    Google Scholar 

  3. Klein G, Sjorgen H, Klein E, Hellstrom KE (1960) Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res 20:1561–1572

    Google Scholar 

  4. Rouse BT, Wagner H, Harris AW (1972) In vivo activity of in vitro iimunized lymphocytes. I. Tumor allograft rejection mediated by in vitro activated mouse thymocytes. J Immunol 108:1353–1361

    Google Scholar 

  5. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den EB, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Google Scholar 

  6. De Plaen E, Lurquin C, Van Pel A, Mariame B, Szikora JP, Wolfel T, Sibille C, Chomez P, Boon T (1988) Immunogenic (tum-)variants of mouse tumor P815: cloning of the gene of tum-antigen P9l A and identification of the tum-mutation. Proc Natl Acad Sci USA 85:2274–2278

    Google Scholar 

  7. Türeci G, Usener D, Schneider S, Sahin U (2005) Identification of tumor-associated autoantigens with SEREX. Methods Mol Med 109:137–154

    Google Scholar 

  8. Sahin U, Türeci O, Schmitt H, Cochlovius B, Johannes T, Schmits R, Stenner F, Luo G, Schobert I, Pfreundschuh M (1995) Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 92:11810–11813

    Google Scholar 

  9. Vainio H (2002) The need for preventive drugs and vaccines in global cancer control: a challenge for public health and for industry. Toxicol Ind Health 18:84–90

    Google Scholar 

  10. Harper DM, Franco EL, Wheeler C, Ferris DG, Jenkins D, Schuind A, Zahaf T, Innis B, Naud P, De Carvalho NS, Roteli-Martins CM, Teixeira J, Blatter MM, Korn AP, Quint W, Dubin G (2004) Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. Lancet 364:1757–1765

    Google Scholar 

  11. Forni G, Curcio C, Spadaro M, Iliffe J, Quaglino E, Di Carlo E, Musiani P Lollini PL (2003) Immunization in tumor prevention. Int Immunopharmacol 3:1151–1158

    Google Scholar 

  12. Sabel MS, Sondak VK (2002) Tumor vaccines: a role in preventing recurrence in melanoma? Am J Clin Dermatol 3:609–616

    Google Scholar 

  13. Mocellin S, Mandruzzato S, Bronte V, Lise M, and Nitti D (2004) Part I: Vaccines for solid tumours. Lancet Oncol 5:681–689

    Google Scholar 

  14. Nawrocki S, Murawa P, Malicki J, Kapcinska M, Gryska K, Izycki D, Kaczmarek A, Laciak M, Czapczyk A, Karczewska A, Rose-John S, Mackiewicz A (2000) Genetically modified tumour vaccines (GMTV) in melanoma clinical trials. Immunol Lett 74:81–86

    Google Scholar 

  15. Jocham D, Richter A, Hoffmann L, Iwig K, Fahlenkamp D, Zakrzewski G, Schmitt E, Dannenberg T, Lehmacher W, von Wietersheim J, Doehn C (2004) Adjuvant autologous renal tumour cell vaccine and risk of tumour progression in patients with renal-cell carcinoma after radical nephrectomy: phase III, randomised controlled trial. Lancet 363:594–599

    Google Scholar 

  16. Vermorken JB, Claessen AM, van Tinteren H, Gall HE, Ezinga R, Meijer S, Scheper RJ, Meijer CJ, Bloemena E, Ransom JH, Hanna MGJr, Pinedo HM (1999) Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 353:345–350

    Google Scholar 

  17. Hanna MG Jr, Hoover HC Jr, Vermorken JB, Harris JE, Pinedo HM (2001) Adjuvant active specific immunotherapy of stage II and stage III colon cancer with an autologous tumor cell vaccine: first randomized phase III trials show promise. Vaccine 19:2576–2582

    Google Scholar 

  18. Baars A, Claessen AM, Wagstaff J, Giaccone G, Scheper RJ, Meijer S, Schakel MJ, Gall HE, Meijer CJ, Vermorken JB, Pinedo HM, and van den Eertwegh AJ (2002) A phase II study of active specific immunotherapy and 5-FU/Leucovorin as adjuvant therapy for stage III colon carcinoma. Br J Cancer 86:1230–1234

    Google Scholar 

  19. Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M, Mazzaferro V, Coppa J, Srivastava PK, Parmiani G (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233

    Google Scholar 

  20. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425; Epub 2001:395–425

    Google Scholar 

  21. Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E, Mariani L, Camerini T, Marchiano A, Andreola S, Camerini R, Corsi M, Lewis JJ, Srivastava PK, Parmiani G (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245

    Google Scholar 

  22. Belli F, Testori A, Rivoltini L et al. (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180

    Google Scholar 

  23. Sullenger BA, Gilboa E (2002) Emerging clinical applications of RNA. Nature 418:252–258

    Google Scholar 

  24. Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E (2000) Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res 60:1028–034

    Google Scholar 

  25. Gilboa E, Vieweg J (2004) Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev 199:251–263

    Google Scholar 

  26. Gilboa E (2004) The promise of cancer vaccines. Nat Rev Cancer 4:401–411

    Google Scholar 

  27. Boon T, Coulie PG, Van den EB (1997) Tumor antigens recognized by T cells. Immunol Today 18:267–268

    Google Scholar 

  28. Koslowski M, Bell C, Seitz G, Lehr HA, Roemer K, Muntefering H, Huber C, Sahin U, Tureci O (2004) Frequent nonrandom activation of germ-line genes in human cancer. Cancer Res 64:5988–5993

    Google Scholar 

  29. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    Google Scholar 

  30. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A, Taquet S, Coquery S, Wittkowski KM, Bhardwaj N, Pineiro L, Steinman R, Fay J (2001) Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 61:6451–6458

    Google Scholar 

  31. Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Jnt J Cancer 86:385–392

    Google Scholar 

  32. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R, Scott AM, Maraskovsky E, McArthur G, MacGregor D, Sturrock S, Tai TY, Green S, Cuthbertson A, Maher D, Miloradovic L, Mitchell SV, Ritter G, Jungbluth AA, Chen YT, Gnjatic S, Hoffman EW, Old LJ, Cebon JS (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101:10697–10702

    Google Scholar 

  33. Jäger E, Nagata Y, Gnjatic S, Wada H, Stockert E, Karbach J, Dunbar PR, Lee SY, Jungbluth A, Jäger D, Arand M, Ritter G, Cerundolo V, Dupont B, Chen YT, Old LJ, Knuth A (2000) Monitoring CD8 T cell responses to NY-ESO-1: correlation of humoral and cellular immune responses. Proc Natl Acad Sci USA 97:4760–4765

    Google Scholar 

  34. Wölfel T, Hauer M, Schneider J, Serrano M, Wölfel C, Klehmann-Hieb E, De Plaen E, Hankeln T, Meyer zum Buschenfelde KH, Beach D (1995) A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma. Science 269:1281–1284

    Google Scholar 

  35. Oka Y, Tsuboi A., Taguchi T, Osaki T, Kyo T, Nakajima H, Elisseeva OA, Oji Y, Kawakami M, Ikegame K, Hosen N, Yoshihara S, Wu F, Fujiki F, Murakami M, Masuda T, Nishida S, Shirakata T, Nakatsuka S, Sasaki A, Udaka K, Dohy H, Aozasa K, Noguchi S, Kawase I, Sugiyama H (2004) Induction of WT1 (Wilms‘ tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc Natl Acad Sci USA 101:13885–13890

    Google Scholar 

  36. Disis ML, Schiffman K, Salazar LG, Almand B, Knutson KL (2003) HER-2/neu vaccines. Cancer Chemother Biol Response Modif 21:275–285

    Google Scholar 

  37. Vlad AM, Kettel JC, Alajez NM, Carlos CA, Finn OJ (2004) MUC1 immunobiology: from discovery to clinical applications. Adv Immunol 82:249–293

    Google Scholar 

  38. Liu M, Acres B, Balloul JM, Bizouarne N, Paul S, Slos P, Squiban P (2004) Gene-based vaccines and immunotherapeutics. Proc Natl Acad Sci USA 101 [Suppl 2]:14567–14571

  39. Essajee S, Kaufman HL (2004) Poxvirus vaccines for cancer and HIV therapy. Expert Opin Biol Ther 4:575–588

    Google Scholar 

  40. Hodge JW, McLaughlin JP, Kantor JA, Schlom J (1997) Diversified prime and boost protocols using recombinant vaccinia virus and recombinant non-replicating avian pox virus to enhance T-cell immunity and antitumor responses. Vaccine 15:759–768

    Google Scholar 

  41. Boisgerault F, Moron G, Leclerc C (2002) Virus-like particles: a new family of delivery systems. Expert Rev Vaccines 1:101–109

    Google Scholar 

  42. Jäger E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G, Hoffman E, Arand M, Old LT, Knuth A (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198–12203

    Google Scholar 

  43. Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995

    Google Scholar 

  44. Puccetti P, Bianchi R, Fioretti MC, Ayroldi E, Uyttenhove C, Van Pel A, Boon T, Grohmann U (1994) Use of a skin test assay to determine tumor-specific CD8+ T cell reactivity. Eur J Immunol 24:1446–1452

    Google Scholar 

  45. Yee C, Greenberg P (2002) Modulating T-cell immunity to tumours: new strategies for monitoring T-cell responses. Nat Rev Cancer 2:409–419

    Google Scholar 

  46. Pittet MJ, Speiser DE, Valmori D, Rimoldi D, Lienard D, Lejeune F, Cerottini JC, Romero P (2001) Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int Immunopharmaco 1:1235–1247

    Google Scholar 

  47. Speiser DE, Pittet MJ, Guillaume P, Lubenow N, Hoffman E, Cerottini JC, Romero P (2004) Ex vivo analysis of human antigen-specific CD8+ T-cell responses: quality assessment of fluorescent HLA-A2 multimer and interferon-gamma ELISPOT assays for patient immune monitoring. J Immunother 27:298–308

    Google Scholar 

  48. Coulie PG, van der BP (2003) T-cell responses of vaccinated cancer patients. Curr Opin Immunol 15:131–137

    Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Sahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britten, C.M., Sahin, U. Impfstrategien zur Prävention oder Therapie von Tumoren. Onkologe 11, 502–513 (2005). https://doi.org/10.1007/s00761-005-0865-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-005-0865-x

Schlüsselwörter

Keywords

Navigation