Skip to main content
Log in

Biologie des multiplen Myeloms

Biology of multiple myeloma

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die molekulare Pathogenese des Multiplen Myeloms ist als mehrstufiger Prozess anzusehen, für den sowohl die komplexen genetischen Veränderungen der Myelomzellen als auch die Eigenschaften der Knochenmarkstromazellen verantwortlich sind. Zu den frühesten chromosomalen Ereignissen zählen Translokationen des Immunglobulinschwerketten-Gens, wodurch Onkogene der Translokationspartner-Region (z.B. cyclin D1 auf 11q13 oder fgfr3/mmset auf 4p16.3) dysreguliert werden, und Deletionen von Chromosom 13q, wo ein kritisches Tumorsuppressorgen vermutet wird. Die Proliferation und das Überleben der Myelomzellen wird von den Knochenmarkstromazellen durch Zytokine unterstützt. Osteoklasten aktivierende Faktoren wie MIP1α sowie ein Ungleichgewicht im RANKL/Osteoprotegerin-System bilden die Basis der osteolytischen Knochenveränderungen beim multiplen Myelom. Es ist zu erwarten, dass die weitere Charakterisierung dieser biologischen Grundlagen zur Identifizierung molekularer Targets führt, welche für neue Therapieansätze genützt werden können.

Abstract

For our understanding of multiple myeloma, features of the malignant clone and changes induced by the bone marrow microenvironment are equally important. Among the earliest genetic events are translocations of the immunoglobulin heavy chain gene locus, which lead to dysregulation of oncogenes at translocation partner regions (e.g., cyclin D1 at 11q13 or fgfr3/mmset at 4p16.3) and deletions of chromosome 13q, the site of a putative tumor suppressor gene. Bone marrow stromal cells support growth and survival of myeloma cells via various cytokines. Osteoclast-activating factors such as MIP1α as well as imbalances in the RANKL/osteoprotegerin system represent the molecular basis for myeloma bone disease. Further characterization of critical events in the development of monoclonal gammopathies will likely lead to the identification of new molecular targets for future therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Kyle RA, Therneau TM, Rajkumar SV et al. (2002) A long-term study of prognosis in monoclonal gammopathy of undetermined significance. N Engl J Med 346:564–569

    Article  PubMed  Google Scholar 

  2. Bergsagel PL, Chesi M, Nardini E et al. (1996) Promiscuous translocations into immunoglobulin heavy chain switch regions in multiple myeloma. Proc Natl Acad Sci USA 93:13931–13933

    Article  CAS  PubMed  Google Scholar 

  3. Bergsagel PL, Kuehl WM (2003) Critical roles for immunoglobulin translocations and cyclin D dysregulation in multiple myeloma. Immunol Rev 194:96–104

    Article  Google Scholar 

  4. Seidl S, Kaufmann H, Drach J (2003) New insights into the pathophysiology of multiple myeloma. Lancet Oncol 4:557–564

    Article  CAS  PubMed  Google Scholar 

  5. Fonseca R, Barlogie B, Bataille R et al. (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    CAS  PubMed  Google Scholar 

  6. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: Evolving genetic events and host interactions. Nat Rev Cancer 2:175–187

    Article  CAS  PubMed  Google Scholar 

  7. Zhan F, Hardin J, Kordsmeier B et al. (2002) Global gene expression profiling of multiple myeloma, monoclonal gammopathy of undetermined significance, and normal bone marrow plasma cells. Blood 99:1745–1757

    Article  CAS  PubMed  Google Scholar 

  8. Fonseca R, Paz NG, Picken NB et al. (2003) The recurrent IgH translocations are highly associated with nonhyperdiploid variant of multiple myeloma. Blood 102:2562–2567

    Article  CAS  PubMed  Google Scholar 

  9. Kröger N, Schilling G, Einsele H et al. (2004) Deletion of chromosome band 13q14 as detected by fluorescence in situ hybridization is a prognostic factor in patients with multiple myeloma who are receiving allogeneic dose-reduced stem cell transplantation. Blood 103:4056–4061

    Article  PubMed  Google Scholar 

  10. Elnenaei MO, Hamoudi RA, Swansbury J et al. (2003) Delineation of the minimal region of loss at 13q14 in multiple myeloma. Genes Chromosomes Cancer 36:99–106

    Article  CAS  PubMed  Google Scholar 

  11. Shou Y, Martelli ML, Gabrea A et al. (2000) Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci USA 97:228–233

    Article  CAS  PubMed  Google Scholar 

  12. Seidl S, Ackermann J, Kaufmann H et al. (2004) DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies. Cancer 100:2598–2606

    Article  CAS  PubMed  Google Scholar 

  13. Galm O, Yoshikawa H, Esteller M et al. (2003) SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101:2784–2788

    Article  CAS  PubMed  Google Scholar 

  14. Hallek M, Bergsagel PL, Anderson KC (1998) Multiple myeloma: increasing evidence for a multistep transformation process. Blood 91:3–21

    CAS  PubMed  Google Scholar 

  15. Anderson KC (2003) Moving disease biology from the lab to the clinic. Cancer 97:796–801

    Article  PubMed  Google Scholar 

  16. Hideshima T, Chauhan D, Schlossman R et al. (2001) The role of tumor necrosis factor alpha in the pathophysiology of human multiple myeloma: therapeutic applications. Oncogene 20:4519–4527

    Article  CAS  PubMed  Google Scholar 

  17. Podar K, Tai YT, Davis FE et al. (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98:428–435

    Article  CAS  PubMed  Google Scholar 

  18. Qiang YW, Kopantzev E, Rudikoff S (2002) Insulin like growth factor-1 signaling in multiple myeloma: downstream elements, functional correlates, and pathway cross-talk. Blood 99:4138–4146

    Article  CAS  PubMed  Google Scholar 

  19. Sezer O, Heider U, Zavrski I et al. (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101:2094–2098

    Article  CAS  PubMed  Google Scholar 

  20. Tian E, Zhan F, Walker R et al. (2003) The role of the WNT-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349:2483–2494

    Article  CAS  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Drach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drach, J. Biologie des multiplen Myeloms. Onkologe 10, 801–808 (2004). https://doi.org/10.1007/s00761-004-0750-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-004-0750-z

Schlüsselwörter

Keywords

Navigation