Skip to main content
Log in

Therapie mit „small molecules“

Grundlagen und klinische Problematik in der Anwendung bei soliden Tumoren

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Niedermolekulare synthetische Moleküle (small molecules) haben in jüngster Zeit erhebliches Interesse für die Behandlung solider Tumoren gefunden. Sie richten sich vorwiegend gegen Rezeptoren der Signaltransduktion (Tyrosinkinasen, EGF), die für die Proliferation bei manchen Subtypen maligner Tumoren von entscheidender Bedeutung sind. Während die EGF-Rezeptorblockade hinsichtlich der dadurch gebotenen therapeutischen Optionen noch schwer abschätzbar ist, hat die Blockade von c-kit, einem homologen Stammzellfaktor bei der CML und bei gastrointestinalen Stromatumoren, bereits einen festen Stellenwert erreicht. Die Beeinflussung von PDGF-, von VEGF- oder anderen Rezeptoren beruht meist auf der Blockade der kristallografisch ermittelten Struktur der Kinasedomäne mit Behinderung der Phosphorylierung. Das Medikamenten-Engineering ist hierbei von entscheidender Bedeutung, aber auch die Subklassifikation von Malignomen, um tatsächlich denjenigen Tumortyp zur Behandlung zu bringen, bei dem der blockierbare Rezeptor einen oder den entscheidenden Schritt der Tumorproliferation darstellt. Hierfür sind Genexpressionsstudien auf der Basis von Mikroarrays eine wichtige Voraussetzung. Da unklar ist, wie lange eine Rezeptorblockade anhält, sollte bei Resektabilität des Residualtumors der operative Eingriff angestrebt werden. Zu berücksichtigen ist, dass für Operationen unter den Bedingungen der Rezeptorblockade noch wenige Erfahrungen vorliegen. Die Aufklärung der Resistenzmechanismen gegenüber small molecules hat für die CML und GIST gerade begonnen und verspricht wichtige Aufschlüsse über intratumorale Anpassungsvorgänge an medikamentöse Rezeptorblockaden zu liefern.

Abstract

Small molecules represent a group of orally taken inhibitors of signaling cascades that have gained increasing attention for the treatment of solid tumors. EGF and VEGF as well as c-kit receptors are targets to stop proliferation in certain subtypes of cancer known to depend mainly on these pathways for progression. The efficacy of targeting the EGF receptor has still to be proven for colorectal cancer, NSCLC, and tumors of the head and neck. However, targeting c-kit protooncogene in chronic myeloid leukemia and GI stromal tumors (GIST) with imatinib has become standard. To target the receptors mentioned or PDGF depends on successful drug engineering based on knowledge about conformation of relevant kinase domains. Consecutively, phosphorylation of the receptor is blocked. Gene expression studies on the basis of microarrays represent the other side of the coin to select the relevant subgroup of malignancies for treatment in which the receptor to be blocked is really the clue to proliferation. At the present stage of knowledge, it remains often unclear how long the time period of tumor control via small molecule administration might be. Therefore, if resectability of the residual tumor has been confirmed, surgery should be strongly considered. As there is still little experience in this setting, unexpected morbidity might occur. Clarification of the mechanisms of resistance to small molecules has already begun for CML and GIST and promises to provide important information for a better understanding of the mechanisms of tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6a–c
Abb. 7
Abb. 8

Literatur

  1. Allander SV et al. (2002) Expression profiling of synovial sarcoma by cDNA microarrays: association of ERB-B2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 16:1587–1595

    Google Scholar 

  2. Baselga J (2001) The EGFR as a target for anticancer therapy – focus on cetuximab. Eur J Cancer 37:S16-S22

    CAS  PubMed  Google Scholar 

  3. Bossemeyer D (1995) Protein kinases-structure and function. FEBS Lett 369:57–61

    Article  CAS  PubMed  Google Scholar 

  4. Buchdunger E, Zimmermann J, Mett H, Meyer T, Müller M, Regenass U, Lydon NB (1995) Selective inhibition of the platelet-derived growth factor signal transduction pathway by a protein-tyrosine kinase inhibitor of the 2-phenylaminopyrimidine calss. Proc Natl Acad Sci USA 92:2558–2562

    CAS  PubMed  Google Scholar 

  5. Cohen S, Carpenter G, King L Jr (1980) Epidermal Growth Factor Receptor-Kinase Interactions: Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity. J Biol Chem 255:4834–4842

    CAS  PubMed  Google Scholar 

  6. Cohen MH, Williams GA, Sridhara R, Chen G, Pazdur R (2003) FDA approval summary : gefitinib (ZD1839) tablets. Oncologist 8: 303–306

    CAS  PubMed  Google Scholar 

  7. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Google Scholar 

  8. Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich A, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature 307:521–527

    CAS  PubMed  Google Scholar 

  9. Druker BJ (2003) Imatinib alone and in combination for chronic myeloid leukemia. Semin Hematol 40:50–58

    Article  CAS  Google Scholar 

  10. Fischer T (2002) Signalübertragungshemmer—Wirkprinzip und klinische Anwendung. Unimed, Bremen

  11. Frolov A, Chahwan S, Ochs M, Arnoletti JP, Pan ZZ, Favorova O, Fletcher J, van Mehren M, Eisenberg B, Godwin AK (2003) Response Markers and the molecular mechanism of action of Gleevec in gastrointestinal stromal tumors. Mol Cancer Ther 2:669–709

    Google Scholar 

  12. Goldman JM (2000) Tyrosine-kinase inhibition in treatment of chronic myeloid leukaemia. Lancet 355:1031–1032

    Article  CAS  PubMed  Google Scholar 

  13. Heinrich MC et al. (2003) Kinase Mutations and Imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 21:4342–4349

    Article  PubMed  Google Scholar 

  14. Hirota S, Isozaki K, Moriyama Y (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    CAS  PubMed  Google Scholar 

  15. Hirota S, Nishida T, Isozaki K, Taniguchi M, Nishikawa K, Ohashi A, Takabayashi A, Obayashi T, Okuno T, Kinoshita K, Chen H, Shinomura Y, Kitamura Y (2002) Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 122:1493–1499

    Google Scholar 

  16. Hohenberger C, Reichardt P, Stroszczynski C, Schneider U, Hossfeld DK (2003) Gastrointestinale Stromatumoren (GIST) – Tumorentität und Therapie mit Imatinib mesylat. Dtsch Ärztebl 100:A 1612–1618

    Google Scholar 

  17. Joensuu H, Roberts PJ, Sarloma-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, Silberman S, Capdeville R, Dimitrijevic S, Druker B, Demetri GD (2001) Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N Engl J Med 344:1052–1056

    CAS  PubMed  Google Scholar 

  18. Jost D, Stroszczynski C, Chmelik P, Gaffke G, Schlecht I, Pink D, Reichardt P, Schneider U, Hohenberger P, Felix R (2003) Morphologie gastrointestinaler Stromatumoren im fortgeschrittenen Stadium der Erkrankung. Röfo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 175:791–798

    Google Scholar 

  19. Kim SJ, Uehara H, Karashima T, Shepherd DL, Killion JJ, Fidler IJ (2003) Blockade of Epidermal Growth Factor Receptor Signaling in Tumor Cells and Tumor-associated Endothelial Cells for Therapy of Androgen-independent Human Prostate Cancer Growing in the Bone of Nude Mice. Clin Cancer Res 9:1200–1210

    CAS  PubMed  Google Scholar 

  20. Lux ML, Rubin BP, Biase TL, Chen C-J, Maclure T, Demetri G, Xiao S, Singer S, Fletcher CDM, Fletcher JA (2000) KIT extracellular and kinase dmain mutations in gastrointestinal stromal tumors. Am J Pathol 156:791–795

    CAS  PubMed  Google Scholar 

  21. Mendelsohn J (2002) Targeting the Epidermal Growth Factor Receptor for Cancer Therapy. J Clin Oncol 20:S14–S22

    Google Scholar 

  22. Nielsen TO, West RB, Linn SC, Alter O, Knowling MA, O’Connell JX, Zhu S, Fero M, Sherlock G, Pollack JR, Brown PO, Botstein D, van de Rijn M (2002) Molecular characterisation of soft tissue tumours: a gene expression study. Lancet 359:1301–1307

    Article  CAS  PubMed  Google Scholar 

  23. Pietras K, Rubin K, Sjoblom T, Buchdunger E, Sjoquist M, Heldin CH, Ostman A (2002) Inhibition of PDGF receptor signaling in tumor stroma enhances antitumor effect of chemotherapy Cancer Res 62:5476–5484

    CAS  Google Scholar 

  24. Pietras RJ (2003) Interactions between estrogen and growth factor receptors in human breast cancers and the tumor-associated vasculature. Breast J 9:361–373

    Article  CAS  PubMed  Google Scholar 

  25. Reichardt P, Schneider U, Stroszczynski C, Pink D, Hohenberger P (2003) Histological response of gastrointestinal stromal tumor to treatment with tyrosine kinase inhibitor imatinib mesylate. J Clin Pathol 56 (im Druck)

  26. Reuter CW, Morgan MA, Bergmann L (2000) Targeting the Ras signaling pathway: a rational, mechanism-based treatment for hematologic malignancies? Blood 96:1655–1669

    CAS  PubMed  Google Scholar 

  27. Rubin BP, Schuetze SM, Eary JF, Norwood TH, Mirza S, Conrad EU, Bruckner JD (2002) Molecular targeting of Platelet-Derived Growth Factor B by imatinib mesylate in a patient with metastatic dermatofibrosarcoma protuberans. J Clin Oncol 20:3586–3591

    Article  CAS  PubMed  Google Scholar 

  28. Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J (2000) Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science 289:1938–1942

    Article  CAS  PubMed  Google Scholar 

  29. Singer S, Rubin BP, Lux ML, Chen CJ, Demetri GD, Fletcher CDM (2002) Prognostic Value of KIT Mutation Type, Mitotic Activity, and Histologic Subtype in Gastrointestinal Stromal Tumors. J Clin Oncol 20:3898–3905

    Article  CAS  PubMed  Google Scholar 

  30. Topaly J, Zeller WJ, Fruehauf S (2001) Synergistic activity of the new ABL-specific tyrosine kinase inhibitor STI571 and chemotherapeutic drugs on BCR-ABL positive chronic myelogenous leukaemia cells. Leukemia 15:342–347

    Article  CAS  PubMed  Google Scholar 

  31. Torrance CJ, Jackson PE, Montgomery E (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6:1024–1028

    Article  CAS  PubMed  Google Scholar 

  32. Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R, Killion JJ, Logothetis C, Mathew P, Fidler IJ (2003) Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 95:458–470

    Article  CAS  PubMed  Google Scholar 

  33. Ullrich A, Coussens L, Hayflick JS, Dull TJ, Gray A, Tam AW, Lee J, Yarden Y, Libermann TA, Schlessinger J (1984) Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature 309:148-425

    Google Scholar 

  34. Van Oosterom AT, Judson I, Verweij J, Stroobants S, Donato di Paola E, Dimitrijevic S, Martens M, Webb A, Sciot R, Van Glabbeke M, Silberman S, Nielsen OS (2001) Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study. The Lancet 358:1421–1423

    Article  Google Scholar 

Download references

Interessenkonflikt:

Der korrespondierende Autor weist auf eine Verbindung mit folgender Firma/Firmen hin: Unterstützung für Forschungsprojekte durch NOVARTIS

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hohenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hohenberger, P. Therapie mit „small molecules“. Onkologe 10, 38–45 (2004). https://doi.org/10.1007/s00761-003-0637-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-003-0637-4

Schlüsselwörter

Keywords

Navigation