Skip to main content
Log in

Molekulare Modulation der Strahlenwirkung

  • Leitthema
  • Published:
Der Onkologe Aims and scope

Zusammenfassung

Die Effizienz, Vielseitigkeit und Qualität der Strahlentherapie im Rahmen multimodaler Therapiekonzepte hat zu deutlichen Verbesserungen der Therapie solider Neoplasien beigetragen. Grundlegend hierbei waren v. a. technologische Neuerungen wie z. B. die computer- und schnittbildgestützte Bestrahlungsplanung.

In letzter Zeit rücken zunehmend neue Therapiestrategien zur Modulation der Strahlenwirkung auf der Basis zell- und molekularbiologischer Untersuchungen in den Vordergrund. Allerdings ist diese Entwicklung mit neuartigen Problemen behaftet: Aufgrund der hohen Spezifität der Agenzien muss gewährleistet sein, dass zielstrukturrelevante Veränderungen im individuellen Tumorgeschehen vorliegen. Darüber hinaus zeigen diese Substanzen häufig komplexe und teilweise ambivalente Wirkungen. Bei der Planung von Studien unter Verwendung hoch spezifischer Agenzien müssen derartige Probleme daher berücksichtigt werden. Im Rahmen des vorliegenden Artikels sollen anhand verschiedener neuartiger Ansätze die Prinzipien und Probleme einer molekularen Modulation der Strahlenwirkung dargestellt werden.

Abstract

Radiation-based treatment modalities are a mainstay of modern oncology. Technological improvements, i.e., CT-based planning and computer-optimized dose delivery techniques are of utmost importance for the efficacy, versatility, and quality of modern radiation treatments. However, new biological treatment strategies, which are mainly based on molecular analysis of cellular radiation responses, are being tested in clinical trials and may widen the therapeutic spectrum in radiation oncology. Unfortunately, these approaches are associated with a variety of new problems. In this regard, the high specificity of the biological modifier requires the presence of defined alterations in cellular pathways in an individual patient. Furthermore, many of the agents employed may exert complex and even ambivalent effects. Thus, for the design of new trials using biological response modulators all these characteristics of these novel drugs have to be taken into account. The aim of the present article is to introduce the principles and problems of therapies based on the molecular modulation of radiation responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2a–d
Abb. 3

Literatur

  1. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA, Blackie C, Chang L, McMurtrey AE, Hebert A, DeForge L, Koumenis IL, Lewis D, Harris L, Bussiere J, Koeppen H, Shahrokh Z, Schwall RH (1999) Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104:155–162

    CAS  PubMed  Google Scholar 

  2. Belka C, Budach W (2002) Anti-apoptotic Bcl-2 proteins: structure, function and relevance for radiation biology. Int J Radiat Biol 78:643–658

    Article  CAS  PubMed  Google Scholar 

  3. Belka C, Knippers P, Rudner J, Faltin H, Bamberg M, Budach W (2000) MEK1 and Erk1/2 kinases as targets for the modulation of radiation responses. Anticancer Res 20:3243–3249

    CAS  PubMed  Google Scholar 

  4. Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K (2000) Differential role of caspase-8 and BID activation during radiation- and CD95-induced apoptosis. Oncogene 19:1181–1190

    Article  CAS  PubMed  Google Scholar 

  5. Belka C, Schmid B, Marini P, Durand E, Rudner J, Faltin H, Bamberg M, Schulze-Osthoff K, Budach W (2001) Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20:2190–2196

    Article  CAS  PubMed  Google Scholar 

  6. Bharti AC, Aggarwal BB (2002) Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 64:883–888

    Article  CAS  PubMed  Google Scholar 

  7. Carter S, Auer KL, Reardon DB, Birrer M, Fisher PB, Valerie K, Schmidt-Ullrich R, Mikkelsen R, Dent P (1998) Inhibition of the mitogen activated protein (MAP) kinase cascade potentiates cell killing by low dose ionizing radiation in A431 human squamous carcinoma cells. Oncogene 16:2787–2796

    Article  CAS  PubMed  Google Scholar 

  8. Chinnaiyan AM, Prasad U, Shankar S, Hamstra DA, Shanaiah M, Chenevert TL, Ross BD, Rehemtulla A (2000) Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc Natl Acad Sci USA 97:1754–1759

    Article  CAS  PubMed  Google Scholar 

  9. Darnell JE, Jr (2002) Transcription factors as targets for cancer therapy. Nat Rev Cancer 2:740–749

    Article  CAS  PubMed  Google Scholar 

  10. Dittmann K, Loffler H, Bamberg M, Rodemann HP (1995) Bowman-Birk proteinase inhibitor (BBI) modulates radiosensitivity and radiation-induced differentiation of human fibroblasts in culture. Radiother Oncol 34:137–143

    Article  CAS  PubMed  Google Scholar 

  11. Dittmann KH, Gueven N, Mayer C, Ohneseit P, Zell R, Begg AC, Rodemann HP (1998) The presence of wild-type TP53 is necessary for the radioprotective effect of the Bowman-Birk proteinase inhibitor in normal fibroblasts. Radiat Res 150:648–655

    CAS  PubMed  Google Scholar 

  12. Dittmann KH, Gueven N, Mayer C, Rodemann HP. Characterization of the amino acids essential for the photo- and radioprotective effects of a Bowman-Birk protease inhibitor-derived nonapeptide. Protein Eng 2001;14:157–160.

    Google Scholar 

  13. Dittmann KH, Gueven N, Mayer C, Rodemann HP. The radioprotective effect of BBI is associated with the activation of DNA repair-relevant genes. Int J Radiat Biol 1998;74:225–230

    Google Scholar 

  14. Dittmann KH, Mayer C, Rodemann HP (2001) O-phospho-L-tyrosine protects TP53 wild-type cells against ionizing radiation. Int J Cancer 96:1–6

    Article  CAS  Google Scholar 

  15. Dittmann KH, Mayer C, Rodemann HP (2003) Radioprotection of normal tissue to improve radiotherapy: the effect of the Bowman Birk protease inhibitor. Curr Med Chem Anti Canc Agents 3:360–363

    CAS  PubMed  Google Scholar 

  16. Dorr W, Noack R, Spekl K, Farrell CL. Modification of oral mucositis by keratinocyte growth factor: single radiation exposure. Int J Radiat Biol 2001;77:341–347

    Google Scholar 

  17. Dorr W, Spekl K, Farrell CL (2002) The effect of keratinocyte growth factor on healing of manifest radiation ulcers in mouse tongue epithelium. Cell Prolif 35:86–92

    Article  CAS  PubMed  Google Scholar 

  18. Farrell CL, Bready JV, Rex KL, Chen JN, DiPalma CR, Whitcomb KL, Yin S, Hill DC, Wiemann B, Starnes CO, Havill AM, Lu ZN, Aukerman SL, Pierce GF, Thomason A, Potten CS, Ulich TR, Lacey DL (1998) Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res 58:933–939

    CAS  PubMed  Google Scholar 

  19. Furuta Y, Hunter N, Barkley T, Jr, Hall E, Milas L (1988) Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res 48:3008–3013

    CAS  PubMed  Google Scholar 

  20. Grosch S, Tegeder I, Niederberger E, Brautigam L, Geisslinger G (2001) COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J 15:2742–2744

    CAS  PubMed  Google Scholar 

  21. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D, Ogi J, Khaletskiy A, Li Z, Weydert C, Longmate JA, Huang TT, Spitz DR, Oberley LW, Li JJ (2003) Manganese superoxide dismutase-mediated gene expression in radiation-induced adaptive responses. Mol Cell Biol 23:2362–2378

    Article  CAS  PubMed  Google Scholar 

  22. Gupta AK, Bakanauskas VJ, Cerniglia GJ, Cheng Y, Bernhard EJ, Muschel RJ, McKenna WG (2001) The Ras radiation resistance pathway. Cancer Res 61:4278–4282

    CAS  PubMed  Google Scholar 

  23. Jendrossek V, Handrick R, Belka C (2003) Celecoxib activates a novel mitochondrial apoptosis signaling pathway. Faseb J 17:1547–1549

    CAS  PubMed  Google Scholar 

  24. Jo M, Kim TH, Seol DW, Esplen JE, Dorko K, Billiar TR, Strom SC (2000) Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6:564–567

    CAS  PubMed  Google Scholar 

  25. Jung M, Dritschilo A (2001) NF-kappa B signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol 11:346–351

    Article  CAS  PubMed  Google Scholar 

  26. Kasid U, Pfeifer A, Brennan T, Beckett M, Weichselbaum RR, Dritschilo A, Mark GE (1989) Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 243:1354–1356

    CAS  PubMed  Google Scholar 

  27. Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, Tofilon PJ, Milas L (2000) Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60:1326–1331

    CAS  PubMed  Google Scholar 

  28. Kitsberg DI, Leder P (1996) Keratinocyte growth factor induces mammary and prostatic hyperplasia and mammary adenocarcinoma in transgenic mice. Oncogene 13:2507–1255

    CAS  PubMed  Google Scholar 

  29. Lammering G (2003) Anti-epidermal growth factor receptor strategies to enhance radiation action. Curr Med Chem Anti-Canc Agents 3:327–333

    Google Scholar 

  30. Lawrence D, Shahrokh Z, Marsters S, Achilles K, Shih D, Mounho B, Hillan K, Totpal K, DeForge L, Schow P, Hooley J, Sherwood S, Pai R, Leung S, Khan L, Gliniak B, Bussiere J, Smith CA, Strom SS, Kelley S, Fox JA, Thomas D, Ashkenazi A (2001) Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7:383–385

    Article  CAS  PubMed  Google Scholar 

  31. Li Q, Verma IM. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002;2:725–34.

    Google Scholar 

  32. Liang L, Hu D, Liu W, Williams JP, Okunieff P, Ding I (2003) Celecoxib reduces skin damage after radiation: selective reduction of chemokine and receptor mRNA expression in irradiated skin but not in irradiated mammary tumor. Am J Clin Oncol 26:S114–121

    Article  PubMed  Google Scholar 

  33. Liu W, Chen Y, Wang W, Keng P, Finkelstein J, Hu D, Liang L, Guo M, Fenton B, Okunieff P, Ding I (2003) Combination of radiation and celebrex (celecoxib) reduce mammary and lung tumor growth. Am J Clin Oncol 26:S103–109

    Article  PubMed  Google Scholar 

  34. Marini P, Belka C (2003) Death receptor ligands: new strategies for combined treatment with ionizing radiation. Curr Med Chem Anti-Canc Agents 3:334–342

    Google Scholar 

  35. McKenna WG, Weiss MC, Bakanauskas VJ, Sandler H, Kelsten ML, Biaglow J, Tuttle SW, Endlich B, Ling CC, Muschel RJ (1990) The role of the H-ras oncogene in radiation resistance and metastasis. Int J Radiat Oncol Biol Phys 18:849–859

    CAS  PubMed  Google Scholar 

  36. Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ (1999) Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 91:1501–1504

    Article  CAS  PubMed  Google Scholar 

  37. Ning S, Shui C, Khan WB, Benson W, Lacey DL, Knox SJ (1998) Effects of keratinocyte growth factor on the proliferation and radiation survival of human squamous cell carcinoma cell lines in vitro and in vivo. Int J Radiat Oncol Biol Phys 40:177–187

    CAS  PubMed  Google Scholar 

  38. Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH (2002) The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 62:5230–5235

    CAS  PubMed  Google Scholar 

  39. Pajonk F, Pajonk K, McBride WH (1999) Inhibition of NF-kappaB, clonogenicity, and radiosensitivity of human cancer cells. J Natl Cancer Inst 91:1956–1960

    Article  CAS  PubMed  Google Scholar 

  40. Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ (2000) Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 6:2513–2520

    CAS  PubMed  Google Scholar 

  41. Raju U, Nakata E, Yang P, Newman RA, Ang KK, Milas L (2002) In vitro enhancement of tumor cell radiosensitivity by a selective inhibitor of cyclooxygenase-2 enzyme: mechanistic considerations. Int J Radiat Oncol Biol Phys 54:886–894

    Article  CAS  PubMed  Google Scholar 

  42. Rudner J, Lepple-Wienhues A, Budach W, Berschauer J, Friedrich B, Wesselborg S, Schulze-Osthoff K, Belka C (2001) Wild-type, mitochondrial and ER-restricted Bcl-2 inhibit DNA damage-induced apoptosis but do not affect death receptor-induced apoptosis. J Cell Sci 114:4161–4172

    CAS  PubMed  Google Scholar 

  43. Russo SM, Tepper JE, Baldwin AS, Jr., Liu R, Adams J, Elliott P, Cusack JC Jr (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50:183–193

    Article  CAS  PubMed  Google Scholar 

  44. Silvestrini R, Benini E, Veneroni S, Daidone MG, Tomasic G, Squicciarini P, Salvadori B (1996) p53 and bcl-2 expression correlates with clinical outcome in a series of node-positive breast cancer patients. J Clin Oncol 14:1604–1610

    CAS  PubMed  Google Scholar 

  45. Slonina D, Hoinkis C, Dorr W (2001) Effect of keratinocyte growth factor on radiation survival and colony size of human epidermal keratinocytes in vitro. Radiat Res 156:761–766

    PubMed  Google Scholar 

  46. Sturm I, Petrowsky H, Volz R, Lorenz M, Radetzki S, Hillebrand T, Wolff G, Hauptmann S, Dorken B, Daniel PT (2001) Analysis of p53/BAX/p16(ink4a/CDKN2) in esophageal squamous cell carcinoma: high BAX and p16(ink4a/CDKN2) identifies patients with good prognosis. J Clin Oncol 19:2272–2281

    CAS  PubMed  Google Scholar 

  47. Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M, Chin W, Jones J, Woodward A, Le T, Smith C, Smolak P, Goodwin RG, Rauch CT, Schuh JC, Lynch DH (1999) Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5:157–163

    Article  CAS  PubMed  Google Scholar 

  48. Wang CY, Guttridge DC, Mayo MW, Baldwin AS Jr (1999) 1 NF-kappaB induces expression of the Bcl-2 homologue A1/Bfl-1 to preferentially suppress chemotherapy-induced apoptosis. Mol Cell Biol 9:5923–5929

    Google Scholar 

  49. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281:1680–1683

    Article  CAS  PubMed  Google Scholar 

  50. Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J (2002) Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62:2029–2033

    CAS  PubMed  Google Scholar 

  51. Werner S, Smola H, Liao X, Longaker MT, Krieg T, Hofschneider PH, Williams LT (1994) The function of KGF in morphogenesis of epithelium and reepithelialization of wounds. Science 266:819–822

    CAS  PubMed  Google Scholar 

  52. Yu D, Watanabe H, Shibuya H, Miura M (2003) Redundancy of radioresistant signaling pathways originating from insulin-like growth factor I receptor. J Biol Chem 278:6702–6709

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Belka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belka, C., Budach, W. & Jendrossek, V. Molekulare Modulation der Strahlenwirkung. Onkologe 10, 55–62 (2004). https://doi.org/10.1007/s00761-003-0633-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00761-003-0633-8

Schlüsselwörter

Keywords

Navigation