Skip to main content
Log in

Funktionelle und Molekulare Bildgebung – Aktueller Stand

  • Radiologie
  • Published:
Wiener klinisches Magazin Aims and scope

Abstract

Als systemischer Entzündungsprozess ist die Arteriosklerose charakterisiert durch die Entstehung von Plaques, Plaqueruptur und/oder Plaqueerosion, die zum Myokardinfarkt führen. Intravaskulärer Ultraschall, MRT und drei-dimensionaler Carotis-Ultraschall sind in der Lage, Plaques auf der Basis ihrer Morphologie und Zusammensetzung darzustellen, können aber nur bedingt die molekulare Typisierung bzw. zuverlässige Unterscheidung zwischen vulnerablen, rupturgefährdeten und stabilen Plaques erreichen. Die molekulare Bildgebung stellt nun in vielerlei Hinsicht eine wichtige komplementäre Säule der modernen präklinischen und klinischen Bildgebung dar (Abb. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Stary HC et al.: A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis. American Heart Association. Circulation 85(1), 391–405 (1992)

    CAS  Google Scholar 

  2. Rudd JH, Davies JR, Weissberg PL.: Imaging of atherosclerosis – can we predict plaque rupture?. Trends Cardiovasc Med 15(1), 17–24 (2005)

    Article  PubMed  Google Scholar 

  3. Tawakol A et al.: In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol. 48(9), 1818–24 (2006)

    Article  PubMed  Google Scholar 

  4. Tahara N et al.: Simvastatin attenuates plaque inflammation: evaluation by fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol. 48(9), 1825–31 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Kooi ME et al.: Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107(19), 2453–8 (2003)

    Article  PubMed  CAS  Google Scholar 

  6. Trivedi RA et al.: In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 35(7), 1631–5 (2004)

    Article  PubMed  Google Scholar 

  7. Deguchi JO et al.: Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114(1), 55–62 (2006)

    Article  PubMed  Google Scholar 

  8. Winter PM et al.: Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler Thromb Vasc Biol 26(9), 2103–9 (2006)

    Article  PubMed  CAS  Google Scholar 

  9. Briley-Saebo KC et al.: Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117(25), 3206–15 (2008)

    Article  PubMed  CAS  Google Scholar 

  10. Hansson EM, Lindsay ME, Chien KR: Regeneration next: toward heart stem cell therapeutics. Cell Stem Cell 5(4), 364–77 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. Segers VF, Lee RT.: Stem-cell therapy for cardiac disease. Nature 451(7181), 937–42 (2008)

    Article  PubMed  CAS  Google Scholar 

  12. Lipinski MJ et al.: Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: a collaborative systematic review and meta-analysis of controlled clinical trials. J Am Coll Cardiol 50(18), 1761–7 (2007)

    Article  PubMed  Google Scholar 

  13. Terrovitis J et al.: Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by singlephoton emission computed tomography or positron emission tomography. J Am Coll Cardiol 52(20), 1652–60 (2008)

    Article  PubMed  Google Scholar 

  14. Wu JC et al.: Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11), 1302–5 (2003)

    Article  PubMed  Google Scholar 

  15. Liu J et al.: Noninvasive monitoring of embryonic stem cells in vivo with MRI transgene reporter. Tissue Eng Part C Methods 15(4), 739–47 (2009)

    Article  PubMed  CAS  Google Scholar 

  16. Chen IY et al.: Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109(11), 1415–20 (2004)

    Article  PubMed  Google Scholar 

  17. Hofmann M et al.: Monitoring of bone marrow cell homing into the inarcted human myocardium. Circulation 111(17), 2198–202 (2005)

    Article  PubMed  Google Scholar 

  18. Karpov RS et al.: Autologous mononuclear bone marrow cells during reparative regeneratrion after acute myocardial infarction. Bull Exp Biol Med 140(5), 640–3 (2005)

    Article  PubMed  CAS  Google Scholar 

  19. Kang WJ et al.: Tissue distribution of 18FFDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47(8), 1295–301 (2006)

    PubMed  Google Scholar 

  20. Brott T, Bogousslavsky J.: Treatment of acute ischemic stroke. N Engl J Med 343(10), 710–22 (2000)

    Article  PubMed  CAS  Google Scholar 

  21. Virmani R et al.: Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 15(6), 439–46 (2002)

    Article  PubMed  Google Scholar 

  22. Terai T, Nagano T.: Fluorescent probes for bioimaging applications. Curr Opin Chem Biol 12(5), 515–21 (2008)

    Article  PubMed  CAS  Google Scholar 

  23. Jaffer FA, Libby P, Weissleder R.: Optical and multimodality molecular imaging: insights into atherosclerosis. Arterioscler Thromb Vasc Biol 29(7), 1017–24 (2009)

    Article  PubMed  CAS  Google Scholar 

  24. Aikawa M, Libby P.: The vulnerable atherosclerotic plaque: pathogenesis and therapeutic approach. Cardiovasc Pathol 13(3), 125–38 (2004)

    Article  PubMed  Google Scholar 

  25. Virmani R et al. Pathology of the vulnerable plaque. J Am Coll Cardiol, 2006. 47(8 Suppl): p. C13–8

    Google Scholar 

  26. Papaspyridonos M et al.: Novel candidate genes in unstable areas of human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 26(8), 1837–44 (2006)

    Article  PubMed  CAS  Google Scholar 

  27. Chen J et al.: In vivo imaging of proteolytic activity in atherosclerosis. Circulation 105(23), 2766–71 (2002)

    Article  PubMed  Google Scholar 

  28. Winter PM et al.: Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108(18), 2270–4 (2003)

    Article  PubMed  CAS  Google Scholar 

  29. Sarai M et al.: Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 50(24), 2305–12 (2007)

    Article  PubMed  CAS  Google Scholar 

  30. Zhu Y, Carmeliet P, Fay WP.: Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation 99(23), 3050–5 (1999)

    PubMed  CAS  Google Scholar 

  31. Stassen JM, Arnout J, Deckmyn H.: The hemostatic system. Curr Med Chem 11(17), 2245–60 (2004)

    PubMed  CAS  Google Scholar 

  32. Jaffer FA et al.: Molecular imaging of factor XIIIa activity in thrombosis using a novel, nearinfrared fluorescent contrast agent that covalently links to thrombi. Circulation 110(2), 170–6 (2004)

    Article  PubMed  CAS  Google Scholar 

  33. Levy LM, Hallett M.: Impaired brain GABA in focal dystonia. Ann Neurol 51(1), 93–101 (2002)

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt KE et al.: Striatal activation during blepharospasm revealed by fMRI. Neurology 60(11), 1738–43 (2003)

    PubMed  Google Scholar 

  35. de Vries PM et al.: Changed patterns of cerebral activation related to clinically normal hand movement in cervical dystonia. Clin Neurol Neurosurg 110(2), 120–8 (2008)

    Article  PubMed  Google Scholar 

  36. Peller M et al. The basal ganglia are hyperactive during the discrimination of tactile stimuli in writer’s cramp. Brain, 2006. 129(Pt 10): p. 2697–708

    Google Scholar 

  37. Bassareo V, Di Chiara G.: Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. Eur J Neurosci 11(12), 4389–97 (1999)

    Article  PubMed  CAS  Google Scholar 

  38. Wang GJ et al.: Brain dopamine and obesity. Lancet 357(9253), 354–7 (2001)

    Article  PubMed  CAS  Google Scholar 

  39. Small DM et al. Changes in brain activity related to eating chocolate: from pleasure to aversion. Brain, 2001. 124(Pt 9): p. 1720–33

    Google Scholar 

  40. Stoeckel LE et al.: Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Neuroimage 41(2), 636–47 (2008)

    Article  PubMed  Google Scholar 

  41. Villemagne VL et al.: Amyloid Imaging with 18F-Florbetaben in Alzheimer Disease and Other Dementias. J Nucl Med 52(8), 1210–7 (2011)

    Article  PubMed  Google Scholar 

  42. Sourbron S et al.: Quantification of cerebral blood flow, cerebral blood volume, and bloodbrain-barrier leakage with DCE-MRI. Magn Reson Med 62(1), 205–17 (2009)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens C. Cyran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cyran, C.C., Rist, C., Paprottka, P.M. et al. Funktionelle und Molekulare Bildgebung – Aktueller Stand. Wien klin Mag 14, 12–16 (2011). https://doi.org/10.1007/s00740-011-419-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00740-011-419-3

Navigation