Skip to main content

Advertisement

Log in

Effect of lipopeptide extracted from Bacillus licheniformis on the expression of bap and luxI genes in multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recently, opportunistic pathogens like Acinetobacter baumannii and Pseudomonas aeruginosa have caused concern due to their ability to cause antibiotic resistance in weakened immune systems. As a result, researchers are always seeking efficient antimicrobial agents to tackle this issue. The hypothesis of the recent study was that probiotic products derived from bacteria would be effective in reducing drug resistance in other bacteria. This research aimed to investigate the antimicrobial properties of probiotic products from various bacterial strains, including Lactobacillus rhamnosus, Pediococcus acidilactisi, Bacillus coagulans, Bacillus subtilis, and Bacillus licheniformis. These were tested against multi-drug-resistant (MDR) standard strains A. baumannii and P. aeruginosa. B. licheniformis was found to be the most effective probiotic strain, possessing the LanA and LanM lantibiotic genes. The lipopeptide nature of the probiotic product was confirmed through high-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) techniques. The anti-biofilm and antimicrobial properties of this probiotic were measured using an SEM electron microscope and minimum inhibitory concentration (MIC) test. Real-time PCR (qPCR) was used to compare the expression of bap and luxI genes, which are considered virulence factors of drug-resistant bacteria, before and after treatment with antimicrobial agents. The MIC results showed that the probiotic product prevented the growth of bacteria at lower concentrations compared to antibiotics. In addition, the ΔΔCqs indicated that gene expression was significantly down-regulated following treatment with the obtained probiotic product. It was found that B. licheniformis probiotic products could reduce drug resistance in other bacteria, making it a potential solution to antibiotic resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All relevant data are within the paper.

Code availability

Not applicable.

References

  • Abatenh E, Gizaw B, Tsegay Z, Tefera G, Aynalem E (2018) Health benefits of probiotics. J Bacteriol Infec Dis 2(1):8–27

    Google Scholar 

  • Abbey TC, Deak E (2019) What’s new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin Microbiol Newsl 41(23):203–209

    Article  Google Scholar 

  • Almasaudi SB (2018) Acinetobacter spp as nosocomial pathogens: Epidemiology and resistance features. Saudi J Biol Sci 25(3):586–596

    Article  PubMed  Google Scholar 

  • Amso Z, Hayouka Z (2019) Antimicrobial random peptide cocktails: a new approach to fight pathogenic bacteria. Chem Commun 55(14):2007–2014

    Article  CAS  Google Scholar 

  • Asaad AM, Ansari S, Ajlan SE, Awad SM (2021) Epidemiology of biofilm producing Acinetobacter baumannii nosocomial isolates from a tertiary care hospital in Egypt: a cross-sectional study. Infection and Drug Resistance 14:709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bafghi MH, Darroudi M, Zargar M, Zarrinfar H, Nazari R (2021) Biosynthesis of selenium nanoparticles by Aspergillus flavus and Candida albicans for antifungal applications. Micro Nano Letters 16(14):656–669

    Article  CAS  Google Scholar 

  • Bafghi MH, Nazari R, Darroudi M, Zargar M, Zarrinfar H (2022) The effect of biosynthesized selenium nanoparticles on the expression of CYP51A and HSP90 antifungal resistance genes in Aspergillus fumigatus and Aspergillus flavus. Biotechnol Prog 38(1):e3206

    Article  CAS  PubMed  Google Scholar 

  • Basavaraju M, Sisnity VS, Palaparthy R, Addanki PK (2016) Quorum quenching: signal jamming in dental plaque biofilms. J Dent Sci 11(4):349–352. https://doi.org/10.1016/j.jds.2016.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  • Berlanga M, Guerrero R (2016) Living together in biofilms: the microbial cell factory and its biotechnological implications. Microb Cell Fact 15(1):165. https://doi.org/10.1186/s12934-016-0569-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhadra S, Chettri D, Kumar Verma A (2022) Biosurfactants: Secondary metabolites involved in the process of bioremediation and biofilm removal. Appl Biochem Biotechnol 195:5541–5567

    Article  PubMed  Google Scholar 

  • Chan Y, Wu XH, Chieng BW, Ibrahim NA, Then YY (2021) Superhydrophobic nanocoatings as intervention against biofilm-associated bacterial infections. Nanomaterials 11(4):1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Liu SA, Mou H, Ma Y, Li M, Hu X (2017) Characterization of lipopeptide biosurfactants produced by Bacillus licheniformis MB01 from marine sediments. Front Microbiol 8:871. https://doi.org/10.3389/fmicb.2017.00871

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen B, Lin L, Fang L, Yang Y, Chen E, Yuan K, Zou S, Wang X, Luan T (2018) Complex pollution of antibiotic resistance genes due to beta-lactam and aminoglycoside use in aquaculture farming. Water Res 134:200–208

    Article  CAS  PubMed  Google Scholar 

  • Cizeikiene D, Jagelaviciute J (2021) Investigation of antibacterial activity and probiotic properties of strains belonging to Lactobacillus and Bifidobacterium genera for their potential application in functional food and feed products. Probiotics Antimicrob Proteins 13:1387–1403

    Article  CAS  PubMed  Google Scholar 

  • Coda R, Cassone A, Rizzello CG, Nionelli L, Cardinali G, Gobbetti M (2011) Antifungal activity of Wickerhamomyces anomalus and Lactobacillus plantarum during sourdough fermentation: identification of novel compounds and long-term effect during storage of wheat bread. Appl Environ Microbiol 77(10):3484–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa PS, Martins TAF, de Macêdo Farias L, França RO, Vieira CD, Nobre V, Gonçalves R, dos Santos SG (2020) Investigation of Relevant Genes and Pathogenicity Factors in Multidrug-Resistant Acinetobacter Baumannii Strains Isolated from Clinical Specimens. Res Trends Microbiol 2:1–7

    Google Scholar 

  • De La Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, Coenye T, Hancock RE (2015) D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 22(2):196–205

    Article  PubMed  PubMed Central  Google Scholar 

  • Denkova R, Goranov B, Teneva D, Denkova Z, Kostov G (2017) Antimicrobial activity of probiotic microorganisms: Mechanisms of interaction and methods of examination. Antimicrob Res Novel Bioknowledge Educ Programs 1:201–212

    Google Scholar 

  • Divyashree S, Anjali P, Somashekaraiah R, Sreenivasa M (2021) Probiotic properties of Lactobacillus casei–MYSRD 108 and Lactobacillus plantarum-MYSRD 71 with potential antimicrobial activity against Salmonella paratyphi. Biotechnol Rep 32:e00672

    Article  CAS  Google Scholar 

  • Dostert M, Trimble MJ, Hancock RE (2021) Antibiofilm peptides: overcoming biofilm-related treatment failure. RSC Adv 11(5):2718–2728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumas J-L, Van Delden C, Perron K, Köhler T (2006) Analysis of antibiotic resistance gene expression in Pseudomonas aeruginosa by quantitative real-time-PCR. FEMS Microbiol Lett 254(2):217–225

    Article  CAS  PubMed  Google Scholar 

  • Fazeli-Nasab B, Sayyed R, Mojahed LS, Rahmani AF, Ghafari M, Antonius S (2022) Biofilm production: a strategic mechanism for survival of microbes under stress conditions. Biocatal Agric Biotechnol 42:102337

    Article  CAS  Google Scholar 

  • Feliatra F, Muchlisin ZA, Teruna HY, Utamy WR, Nursyirwani N, Dahliaty A (2018) Potential of bacteriocins produced by probiotic bacteria isolated from tiger shrimp and prawns as antibacterial to Vibrio, Pseudomonas, and Aeromonas species on fish. F1000Res 7:415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fozouni L, Yaghoobpour M, Ahani Azari A (2019) Probiotics in goat milk: a promising solution for management of drug-resistant Acinetobacter baumannii. Jorjani Biomed J 7(2):31–38

    Google Scholar 

  • Gao X, Zhang M, Li X, Han Y, Wu F, Liu Y (2018) Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol 76:143–152. https://doi.org/10.1016/j.fsi.2018.02.028

    Article  CAS  PubMed  Google Scholar 

  • Garrison A (2019) Characterization and evaluation of the probiotic properties of the sporeforming bacteria, Bacillus coagulans unique IS-2.

  • Greco I, Molchanova N, Holmedal E, Jenssen H, Hummel BD, Watts JL, Håkansson J, Hansen PR, Svenson J (2020) Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci Rep 10(1):13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ (2022) Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: A review. Adv Colloid Interface Sci 309:102781

    Article  CAS  PubMed  Google Scholar 

  • Hosseini Bafghi M, Safdari H, Nazari R, Darroudi M, Sabouri Z, Zargar M, Zarrinfar H (2021) Evaluation and comparison of the effects of biosynthesized selenium and silver nanoparticles using plant extracts with antifungal drugs on the growth of Aspergillus and Candida species. Rend Lincei Sci Nat 32(4):791–803

    Article  Google Scholar 

  • Hosseini Bafghi M, Zarrinfar H, Darroudi M, Zargar M, Nazari R (2022) Green synthesis of selenium nanoparticles and evaluate their effect on the expression of ERG3, ERG11 and FKS1 antifungal resistance genes in Candida albicans and Candida glabrata. Lett Appl Microbiol 74(5):809–819

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Xu X, Song Y, Yuan N, Yu X, Ji Y, Liu J, Jiang T, Yu Z (2019) Structure and product relationship analysis of acyl homoserine lactone synthases among Ensifer adhaerens reveals distinct chromosome and plasmid origins. Biochem Biophys Res Commun 516(3):907–913

    Article  CAS  PubMed  Google Scholar 

  • Imtiaz J, Hashmi I, Saeed A, Qazi I, Arshad M (2013) Development of PCR protocol for detection of Escherichia coli in drinking water. Water Resources Management VII; Brebbia, CA, Ed; WIT PRESS: Southhampton, UK:225–232

  • Jayathilaka E, Rajapaksha DC, Nikapitiya C, De Zoysa M, Whang I (2021) Antimicrobial and anti-biofilm peptide octominin for controlling multidrug-resistant Acinetobacter baumannii. Int J Mol Sci 22(10):5353. https://doi.org/10.3390/ijms22105353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha SS, Joshi SJ (2016) Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz J Microbiol 47(4):955–964. https://doi.org/10.1016/j.bjm.2016.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karami F, Nazari R, Adeli H (2021) Detection of genes encoding metallo-beta-lactamases in Carbapenem resistant Acinetobacter baumannii. J Kerman Univ Med Sci 28(6):559–567

    Google Scholar 

  • Khalil MA, Ahmed FA, Elkhateeb AF, Mahmoud EE, Ahmed MI, Ahmed RI, Hosni A, Alghamdi S, Kabrah A, Dablool AS (2021) Virulence characteristics of biofilm-forming acinetobacter baumannii in clinical isolates using a Galleria Mellonella Model. Microorganisms 9(11):2365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodori M, Douraghi M, Yaseri M, Rahbar M (2017) The impact of primer sets on detection of the gene encoding biofilm-associated protein (Bap) in Acinetobacter baumannii: in silico and in vitro analysis. Lett Appl Microbiol 64(4):304–308. https://doi.org/10.1111/lam.12717

    Article  CAS  PubMed  Google Scholar 

  • Kreling PF, Aida KL, Massunari L, Caiaffa KS, Percinoto C, Bedran TBL, Spolidorio DMP, Abuna GF, Cilli EM, Duque C (2016) Cytotoxicity and the effect of cationic peptide fragments against cariogenic bacteria under planktonic and biofilm conditions. Biofouling 32(9):995–1006

    Article  CAS  PubMed  Google Scholar 

  • Kristoffersen KA, Liland KH, Böcker U, Wubshet SG, Lindberg D, Horn SJ, Afseth NK (2019) FTIR-based hierarchical modeling for prediction of average molecular weights of protein hydrolysates. Talanta 205:120084

    Article  CAS  PubMed  Google Scholar 

  • Kröger C, Kary SC, Schauer K, Cameron AD (2016) Genetic regulation of virulence and antibiotic resistance in Acinetobacter baumannii. Genes (basel) 8(1):12. https://doi.org/10.3390/genes8010012

    Article  CAS  PubMed  Google Scholar 

  • Li K, Min B, Li B (2022) Preparation of amide-enriched micro-mesoporous carbons from bayberry core via prepolymerization and ammonization co-treatment for high-performance supercapacitors. Energy Rep 8:648–660

    Article  Google Scholar 

  • Lomovskaya O, Nelson K, Rubio-Aparicio D, Tsivkovski R, Sun D, Dudley MN (2020) Impact of intrinsic resistance mechanisms on potency of QPX7728, a new ultrabroad-spectrum beta-lactamase inhibitor of serine and metallo-beta-lactamases in Enterobacteriaceae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Antimicrob Agents Chemother 64(6):e00552-e1520

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo LM, Wu L-J, Xiao Y-l, Zhao D, Chen Z-x, Kang M, Zhang Q, Xie Y (2015) Enhancing pili assembly and biofilm formation in Acinetobacter baumannii ATCC19606 using non-native acyl-homoserine lactones. BMC Microbiol 15(1):1–7

    Article  Google Scholar 

  • Maghsood F, Mirshafiey A, Farahani MM, Modarressi MH, Jafari P, Motevaseli E (2018) Dual Effects of Cell Free Supernatants from Lactobacillus acidophilus and Lactobacillus rhamnosus GG in Regulation of MMP-9 by Up-Regulating TIMP-1 and Down-Regulating CD147 in PMADifferentiated THP-1 Cells. Cell J 19(4):559–568. https://doi.org/10.22074/cellj.2018.4447

    Article  PubMed  Google Scholar 

  • Mancuso G, Midiri A, Gerace E, Biondo C (2021) Bacterial antibiotic resistance: the most critical pathogens. Pathogens 10(10):1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazraeh FN, Hasani A, Sadeghi J, Kafil HS, Barhaghi MHS, Sefidan FY, Sharabiani HR, Hematyar Y, Rezaee MA (2021) High frequency of blaPER-1 gene in clinical strains of Acinetobacter baumannii and its association with quorum sensing and virulence factors. Gene Reports 24:101232

    Article  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. BioMed Res Int

  • Meimani F, Nazari R, Rostami MN (2018) Detection of metallo-beta-lactamase-encoding genes among clinical isolates of pseudomonas aeruginosa in Qom Province. Zahedan J Res Med Sci. https://doi.org/10.5812/zjrms.59559

    Article  Google Scholar 

  • Mihu MR, Cabral V, Pattabhi R, Tar MT, Davies KP, Friedman AJ, Martinez LR, Nosanchuk JD (2017) Sustained nitric oxide-releasing nanoparticles interfere with methicillin-resistant Staphylococcus aureus adhesion and biofilm formation in a rat central venous catheter model. Antimicrob Agents Chemother. https://doi.org/10.1128/aac.02020-02016

    Article  PubMed  Google Scholar 

  • Mishra B, Wang G (2017) Individual and combined effects of engineered peptides and antibiotics on Pseudomonas aeruginosa biofilms. Pharmaceuticals 10(3):58

    Article  PubMed  PubMed Central  Google Scholar 

  • Modarresi F, Azizi O, Shakibaie MR, Motamedifar M, Mosadegh E, Mansouri S (2015a) Iron limitation enhances acyl homoserine lactone (AHL) production and biofilm formation in clinical isolates of Acinetobacter baumannii. Virulence 6(2):152–161. https://doi.org/10.1080/21505594.2014.1003001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Modarresi F, Azizi O, Shakibaie MR, Motamedifar M, Valibeigi B, Mansouri S (2015c) Effect of iron on expression of efflux pump (adeABC) and quorum sensing (luxI, luxR) genes in clinical isolates of Acinetobacter baumannii. APMIS 123(11):959–968

    Article  CAS  PubMed  Google Scholar 

  • Moryl M, Spętana M, Dziubek K, Paraszkiewicz K, Różalska S, Płaza GA, Różalski A (2015) Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol 62(4):725–732. https://doi.org/10.18388/abp.2015_1120

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee M, Zaiden N, Teng A, Hu Y, Cao B (2020) Shewanella biofilm development and engineering for environmental and bioenergy applications. Curr Opin Chem Biol 59:84–92

    Article  CAS  PubMed  Google Scholar 

  • Muras A, Romero M, Mayer C, Otero A (2021) Biotechnological applications of Bacillus licheniformis. Crit Rev Biotechnol 41(4):609–627

    Article  CAS  PubMed  Google Scholar 

  • Ndukwe JK, Aliyu GO, Onwosi CO, Chukwu KO, Ezugworie FN (2020) Mechanisms of weak acid-induced stress tolerance in yeasts: prospects for improved bioethanol production from lignocellulosic biomass. Process Biochem 90:118–130

    Article  CAS  Google Scholar 

  • Ninganagouda S, Rathod V, Jyoti H, Singh D, Prema K, Haq MU (2013) Extracellular biosynthesis of silver nanoparticles using Aspergillus flavus and their antimicrobial activity against gram negative MDR strains. Int J Pharma Bio Sci 4(2):222–229

    CAS  Google Scholar 

  • Ouwehand AC, Forssten S, Hibberd AA, Lyra A, Stahl B (2016) Probiotic approach to prevent antibiotic resistance. Ann Med 48(4):246–255

    Article  CAS  PubMed  Google Scholar 

  • Pachori P, Gothalwal R, Gandhi P (2019) Emergence of antibiotic resistance Pseudomonas aeruginosa in intensive care unit; a critical review. Genes Dis 6(2):109–119

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson RA (2019) The Relationship Between Biofilm Production and Human Respiratory Cell Attachment and Invasion by Acinetobacter Baumannii.

  • Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C (2021) Gram-negative bacteria holding together in a biofilm: the Acinetobacter baumannii Way. Microorganisms 9(7):1353. https://doi.org/10.3390/microorganisms9071353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadeghian H, HosseinZarrinfar SH, Ahmadi MH, Tahan M, Bafghi MH (2022) Enhancing the antifungal effect of biosynthesized selenium nanoparticles using Aspergillus Fumigatus. J Knowl Health 17(3):40–51

    CAS  Google Scholar 

  • Safdari H, Khadem N, Tahaghogi S, Hosseini Bafghi M, Mirrazavi A (2020) Effect of Chlamydia trachomatis and Mycoplasma genitalium infections on IVF outcome among women referred to Razavi hospital and Milad infertility center, Mashhad. Iran J Obstet Gynecol Infertil 23(1):40–47

    Google Scholar 

  • Sarikhani Z, Nazari R, Nateghi Rostami M (2017a) First report of OXA-143-lactamase producing Acinetobacter baumannii in Qom. Iran Iran J Basic Med Sci 20(11):1282–1286. https://doi.org/10.22038/ijbms.2017.9490

    Article  PubMed  Google Scholar 

  • Sarikhani Z, Nazari R, Rostami MN (2017b) First report of OXA-143-lactamase producing Acinetobacter baumannii in Qom. Iran Iran J Basic Med Sci 20(11):1282

    PubMed  Google Scholar 

  • Shaaban S, Hamad GM, Genena S, Meheissen MA, Moussa S (2022) Evaluation of the antibacterial activity of Lactobacilli probiotics supernatants against Enterococcus faecalis (in-vitro study). BMC Oral Health 22(1):407. https://doi.org/10.1186/s12903-022-02434-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaosan Z, Zhao T, Wang Y, Mi J, Liu J, Fan X, Niu R, Sun Z (2023) Intestinal microbiota regulates colonic inflammation in fluorosis mice by TLR/NF-κB pathway through short-chain fatty acids. Food Chem Toxicol 178:113866

    Article  Google Scholar 

  • Sharma G, Dang S, Gupta S, Gabrani R (2016) Identification and molecular characterization of bacteria having antimicrobial and antibiofilm activity. Int J Pharm Pharm Sci 8(10):111–114

    Article  CAS  Google Scholar 

  • Smitran A, Lukovic B, Bozic L, Jelic D, Jovicevic M, Kabic J, Kekic D, Ranin J, Opavski N, Gajic I (2023) Carbapenem-resistant Acinetobacter baumannii: biofilm-associated genes, biofilm-eradication potential of disinfectants, and biofilm-inhibitory effects of selenium nanoparticles. Microorganisms 11(1):171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soemarie YB, Milanda T, Barliana MI (2021) Fermented foods as probiotics: a review. J Adv Pharm Technol Res 12(4):335–339. https://doi.org/10.4103/japtr.japtr_116_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L (2021) Bacterial biofilm inhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol 12:676458. https://doi.org/10.3389/fmicb.2021.676458

    Article  PubMed  PubMed Central  Google Scholar 

  • Szczerbiec D, Piechocka J, Głowacki R, Torzewska A (2022) Organic acids secreted by Lactobacillus spp. isolated from urine and their antimicrobial activity against uropathogenic Proteus mirabilis. Molecules 27(17):5557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tegegne BA, Kebede B (2022) Probiotics, their prophylactic and therapeutic applications in human health development: A review of the literature. Heliyon:e09725

  • Thummeepak R, Kongthai P, Leungtongkam U, Sitthisak S (2016) Distribution of virulence genes involved in biofilm formation in multi-drug resistant Acinetobacter baumannii clinical isolates. Int Microbiol 19(2):121–129. https://doi.org/10.2436/20.1501.01.270

    Article  CAS  PubMed  Google Scholar 

  • Tobias NJ, Brehm J, Kresovic D, Brameyer S, Bode HB, Heermann R (2020) New vocabulary for bacterial communication. ChemBioChem 21(6):759–768

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela Ruiz V, Gálvez Gamboa GT, Villa Rodríguez ED, Parra Cota FI, Santoyo G, Sdl S-V (2020) Lipopeptides produced by biological control agents of the genus Bacillus: a review of analytical tools used for their study. Rev Mex De Cienc Agríc 11(2):419–432

    Google Scholar 

  • Vukotic G, Obradovic M, Novovic K, Di Luca M, Jovcic B, Fira D, Neve H, Kojic M, McAuliffe O (2020) Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front Med 7:426

    Article  Google Scholar 

  • Wieërs G, Belkhir L, Enaud R, Leclercq S, Philippart de Foy J-M, Dequenne I, de Timary P, Cani PD (2020) How probiotics affect the microbiota. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2019.00454

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Zou H, Li J, Song T, Lv W, Wang W, Wang Z, Tao S (2022) Impact of quorum sensing signaling molecules in gram-negative bacteria on host cells: current understanding and future perspectives. Gut Microbes 14(1):2039048

    Article  PubMed  PubMed Central  Google Scholar 

  • Yadav S, Chandra R (2020) Biofilm-mediated bioremediation of pollutants from the environment for sustainable development. In: New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Biofilms. Elsevier, pp 177–203

  • Yu YH, Wu CM, Chen WJ, Hua KF, Liu JR, Cheng YH (2021) Effectiveness of Bacillus licheniformis-fermented products and their derived antimicrobial lipopeptides in controlling coccidiosis in broilers. Animals (basel) 11(12):3576. https://doi.org/10.3390/ani11123576

    Article  PubMed  Google Scholar 

  • Yuan J, Raza W, Huang Q, Shen Q (2011) Quantification of the antifungal lipopeptide iturin A by high performance liquid chromatography coupled with aqueous two-phase extraction. J Chromatogr B Analyt Technol Biomed Life Sci 879(26):2746–2750. https://doi.org/10.1016/j.jchromb.2011.07.041

    Article  CAS  PubMed  Google Scholar 

  • Zeraatkar S, Tahan M, Sadeghian H, Nazari R, Behmadi M, Hosseini Bafghi M (2022) Effect of biosynthesized selenium nanoparticles using Nepeta extract against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. J Basic Microbiol. https://doi.org/10.1002/jobm.202200513

    Article  PubMed  Google Scholar 

  • Zeraatkar S, Tahan M, Rostami O, Neshani A, Farsiani H, Shahsavari A, Safdari H, Bafghi MH (2023) antibacterial activity of mangifera indica seed extracts combined with common antibiotics against multidrug-resistant pseudomonas aeruginosa and acinetobacter baumannii isolates. Biosci J 39:e39058

    Article  Google Scholar 

  • Zhang M, Li S, Zhao Y, Wang Y, Zhang W, Wu S, Zhang J, Hu Z, Ding M, Meng Q (2021) Stringent starvation protein A and LuxI/LuxR-type quorum sensing system constitute a mutual positive regulation loop in Pseudoalteromonas. Biochem Biophys Res Commun 534:885–890

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M (2022) Next-generation probiotics: microflora intervention to human diseases. BioMed Res Int. https://doi.org/10.1155/2022/5633403

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran.

Funding

No funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

FG: investigation and perform experiments, writing an original draft, data curation, and formal analysis the study. RN: supervision, project administration, validation, data curation, and writing—review & editing. SSA: formal analysis and writing—review & editing. PJ: data curation and software. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Razieh Nazari.

Ethics declarations

Conflict of interest

All contributing authors declare that they have no conflict of interest.

Ethical approval

No experiments were conducted on animals or humans.

Additional information

Handling editor: Z. Benfoda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanipour, F., Nazari, R., Aghaei, S.S. et al. Effect of lipopeptide extracted from Bacillus licheniformis on the expression of bap and luxI genes in multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Amino Acids 55, 1891–1907 (2023). https://doi.org/10.1007/s00726-023-03346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-023-03346-6

Keywords

Navigation