Skip to main content
Log in

l-Arginine increases AMPK phosphorylation and the oxidation of energy substrates in hepatocytes, skeletal muscle cells, and adipocytes

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previous work has shown that dietary l-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg + 0.5 mM NG-nitro-l-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P < 0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P < 0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P < 0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P < 0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P > 0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ACC:

Acetyl-CoA carboxylase

AMPK:

AMP-activated protein kinase

AU:

Arbitrary unit

CPT-I:

Carnitine palmitoyltransferase I

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

KHB:

Krebs–Henseleit bicarbonate

MCD:

Malonyl-CoA decarboxylase

L-NAME:

NG-Nitro-l-arginine methyl ester

NO:

Nitric oxide

NOS:

Nitric oxide synthase

SCD-1:

Stearoyl-CoA desaturase 1

SDS:

Sodium dodecyl sulfate

S6K1:

Ribosomal protein S6 kinase beta-1

TTBS:

Tris–Tween-buffered saline

References

  • Alam MA, Kauter K, Withers K, Sernia C, Brown L (2013) Chronic l-arginine treatment improves metabolic, cardiovascular and liver complications in diet-induced obesity in rats. Food Funct 4:83–91

    CAS  PubMed  Google Scholar 

  • Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assaad H, Zhou L, Carroll RJ, Wu G (2014) Rapid publication-ready MS word tables for one-way ANOVA. Springer plus 3:474

    PubMed  PubMed Central  Google Scholar 

  • Bergen W, Mersmann HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135:2499–2502

    CAS  PubMed  Google Scholar 

  • Boon MR, Hanssen MJW, Brans B, Hülsman CJM, Hoeks J, Nahon KJ, Bakker C, van Klinken JB, Havekes B, Schaart G, Jazet IM, Rensen PCN, van Marken Lichtenbelt WD (2019) Effect of l-arginine on energy metabolism, skeletal muscle and brown adipose tissue in South Asian and Europid prediabetic men: a randomised double-blinded crossover study. Diabetologia 62:112–122

    CAS  PubMed  Google Scholar 

  • Ceddia RB, William WN Jr, Lima FB, Flandin P, Curi R, Giacobino JP (2000) Leptin stimulates uncoupling protein-2 mRNA expression and Krebs cycle activity and inhibits lipid synthesis in isolated rat white adipocytes. Eur J Biochem 267:5952–5958

    CAS  PubMed  Google Scholar 

  • Wu G, Jaeger LA, Bazer FW, Rhoads JM (2004b) Arginine deficiency in preterm infants: biochemical mechanisms and nutritional implications. J Nutr Biochem 15:442–451

    CAS  PubMed  Google Scholar 

  • Chen JQ, Ma XS, Yang Y, Dai ZL, Wu ZL, Wu G (2018) Glycine enhances expression of adiponectin and IL-10 in 3T3-L1 adipocytes without affecting adipogenesis and lipolysis. Amino Acids 50(5):629–640. https://doi.org/10.1007/s00726-018-2537-3

    Article  CAS  PubMed  Google Scholar 

  • Closs EI, Boissel JP, Habermeier A, Rotmann A (2006) Structure and function of cationic amino acid transporters (CATs). J Membr Biol 213:67–77

    CAS  PubMed  Google Scholar 

  • Dai ZL, Wu ZL, Yang Y, Wang JJ, Satterfield MC, Meininger CJ, Bazer FW, Wu G (2013) Nitric oxide and energy metabolism in mammals. BioFactors 39:383–391

    CAS  PubMed  Google Scholar 

  • Denninger JW, Marletta MA (1999) Guanylate cyclase and the NO/cGMP signaling pathway. Biochim Biophys Acta 1411:334–350

    CAS  PubMed  Google Scholar 

  • Dole VP, Meinertz H (1960) Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem 235:2595–2599

    CAS  PubMed  Google Scholar 

  • Durante W (2020) Amino acids in circulatory function and health. Adv Exp Med Biol 1265:39–56

    CAS  PubMed  Google Scholar 

  • Förstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33:829–837

    PubMed  Google Scholar 

  • Förstermann U, Closs EI, Pollock JS, Nakane M, Schwarz P, Gath I, Kleinert H (1994) Nitric oxide synthase isozymes. Characterization, purification, molecular cloning, and functions. Hypertension 23:1121–1131

    PubMed  Google Scholar 

  • Fouad AM, El-Senousey HK, Yang XJ, Yao JH (2013) Dietary L-arginine supplementation reduces abdominal fat content by modulating lipid metabolism in broiler chickens. Animal 7:1239–1245

    CAS  PubMed  Google Scholar 

  • Fu WJ, Haynes TE, Kohli R, Hu J, Shi W, Spencer TE, Carroll RJ, Meininger CJ, Wu G (2005) Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135:714–721

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Cudd TA, Jobgen WS, Kim SW, Lassala A, Li P, Matis JH, Meininger CJ, Spencer TE (2007) Pharmacokinetics and safety of arginine supplementation in animals. J Nutr 137:1673S-1680S

    CAS  PubMed  Google Scholar 

  • Garcia-Villafranca J, Guillen A, Castro J (2003) Involvement of nitric oxide/cyclic GMP signaling pathway in the regulation of fatty acid metabolism in rat hepatocytes. Biochem Pharmacol 65:807–812

    CAS  PubMed  Google Scholar 

  • He WL, Wu G (2022) Oxidation of amino acids, glucose, and fatty acids as metabolic fuels in enterocytes of developing pigs. Amino Acids 54(7):1025–1039. https://doi.org/10.1007/s00726-022-03151-7

    Article  CAS  PubMed  Google Scholar 

  • Houdijk APJ, Visser JJ, Rijinsburger ER, Teerlink T, van Leeuwen PAM (1998) Dietary glutamine supplementation reduces plasma nitrate levels in rats. Clin Nutr 17:11–14

    CAS  PubMed  Google Scholar 

  • Jobgen WS (2007) Dietary L-arginine supplementation reduces fat mass in diet-induced obese rats. PhD Dissertation. Texas A&M University, College Station, TX, USA

  • Jobgen WS, Wu G (2022) Dietary L-arginine supplementation increases the hepatic expression of AMP-activated protein kinase in rats. Amino Acids. https://doi.org/10.1007/s00726-022-03194-w

    Article  PubMed  Google Scholar 

  • Jobgen WS, Fried SK, Fu WJ, Meininger CJ, Wu G (2006) Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates. J Nutr Biochem 17:571–588

    CAS  PubMed  Google Scholar 

  • Jobgen WS, Jobgen SC, Li H, Meininger CJ, Wu G (2007) Analysis of nitrite and nitrate in biological samples using high-performance liquid chromatography. J Chromatogr B 851:71–82

    CAS  Google Scholar 

  • Jobgen WJ, Meininger CJ, Jobgen SC, Li P, Lee M-J, Smith SB, Spencer TE, Fried SK, Wu G (2009) Dietary L-arginine supplementation reduces white-fat gain and enhances skeletal muscle and brown fat masses in diet-induced obese rats. J Nutr 139:230–237

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kahn BB, Alquier T, Carling D, Hardie DG (2005a) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1:15–25

    CAS  PubMed  Google Scholar 

  • Kahn R, Buse J, Ferranini E, Stern M (2005b) The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetologia 48:1684–1699

    CAS  PubMed  Google Scholar 

  • Kalupahana NS, Claycombe KJ, Newman SJ, Stewart T, Siriwardhana N, Matthan N, Lichtenstein AH, Moustaid-Moussa N (2010) Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr 140:1915–1922

    CAS  PubMed  Google Scholar 

  • Khosroshahi MZ, Asbaghi O, Moradi S, Kelishadi MR, Kaviani M, Mardani M, Jalili C (2020) The effects of supplementation with L-arginine on anthropometric indices and body composition in overweight or obese subjects: a systematic review and meta-analysis. J Funct Foods 71:104022

    Google Scholar 

  • Yan H, Aziz E, Shillabeer G, Wong A, Shanghavi D, Kermouni A, Abdel-Hafez M, Lau DC (2002) Nitric oxide promotes differentiation of rat white preadipocytes in culture. J Lipid Res 43:2123–2129

    CAS  PubMed  Google Scholar 

  • Kröncke KD, Kolb-Bachofen V, Berschick B, Burkart V, Kolb H (1991) Activated macrophages kill pancreatic syngeneic islet cells via arginine-dependent nitric oxide generation. Biochem Biophys Res Commun 175:752–758

    PubMed  Google Scholar 

  • Kuppusamy P, Kim D, Soundharrajan I, Hwang I, Choi KC (2021) Adipose and muscle cell co-culture system: A novel in vitro tool to mimic the in vivo cellular environment. Biology 10:6

    Google Scholar 

  • Lee BS, Kang HS, Pyun KH, Choi IP (1997) Roles of tyrosine kinases in the regulation of nitric oxide synthesis in murine liver cells: Modulation of NF-kappa B activity by tyrosine kinases. Hepatology 25(4):913–919. https://doi.org/10.1002/hep.510250421

    Article  CAS  PubMed  Google Scholar 

  • Li H, Meininger CJ, Wu G (2000) Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. J Chromatogr B 746:199–207

    CAS  Google Scholar 

  • Li SL, Zhang YC, Liu N, Chen JQ, Guo LN, Dai ZL, Wang C, Wu ZL, Wu G (2020) Dietary L-arginine supplementation reduces lipid accretion by regulating fatty acid metabolism in Nile tilapia (Oreochromis niloticus). J Anim Sci Biotechnol 11:82

    PubMed  PubMed Central  Google Scholar 

  • Mariotti F (2020) Arginine supplementation and cardiometabolic risk. Curr Opin Clin Metab Care 23:29–34

    CAS  Google Scholar 

  • McKnight JR, Satterfield MC, Jobgen WS, Smith SB, Spencer TE, Meininger CJ, McNeal CJ, Wu G (2010) Beneficial effects of L-arginine on reducing obesity: potential mechanisms and important implications for human health. Amino Acids 39:349–357

    CAS  PubMed  Google Scholar 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215–1229

    CAS  PubMed  Google Scholar 

  • Meininger CJ, Wu G (1997) l-Glutamine inhibits nitric oxide synthesis in bovine venular endothelial cells. J Pharmacol Exp Ther 281:448–453

    CAS  PubMed  Google Scholar 

  • Miczke A, Suliburska J, Pupek-Musialik D, Ostrowska L, Jabłecka A, Krejpcio Z, Skrypnik D, Bogdański P (2015) Original Article Effect of L-arginine supplementation on insulin resistance and serum adiponectin concentration in rats with fat diet. Int J Clin Exp Med 8:10358–10366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morita T, Shimada Y, Ueki H, Kanagawa A (1996) Stimulation of nitric oxide-cyclic GMP pathway by L-arginine increases the release of hepatic lipase from cultured rat hepatocytes. Biol Pharm Bull 19:1371–1373

    CAS  PubMed  Google Scholar 

  • Muller EA, Danner DJ (2004) Tissue-specific translation of murine branched-chain α-ketoacid dehydrogenase kinase mRNA is dependent upon an upstream open reading frame in the 5’-untranslated region. J Biol Chem 279:44645–44655

    CAS  PubMed  Google Scholar 

  • Nicholls-Grzemski FA, Tirmenstein MA, Fariss MW (1999) Time-dependent production of nitric oxide by rat hepatocyte suspensions. Biochem Pharmacol 57:1223–1226

    CAS  PubMed  Google Scholar 

  • Oliveira MM, Vaughan M (1964) Incorporation of fatty acids into phospholipids of erythrocyte membranes. J Lipid Res 5:156–162

    CAS  PubMed  Google Scholar 

  • Peyton KJ, Liu XM, Shebib AR, Johnson FK, Johnson RA, Durante W (2018) Arginase inhibition prevents the development of hypertension and improves insulin resistance in obese rats. Amino Acids 50:747–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raman CS, Li H, Martasek P, Kral V, Masters BS, Poulos TL (1998) Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell 95:939–950

    CAS  PubMed  Google Scholar 

  • Reid KM, Tsung A, Kaizu T, Jeyabalan G, Ikeda A, Shao L, Wu G, Murase N, Geller DA (2007) Liver I/R Injury is improved by the arginase inhibitor, N-ω-Hydroxy-Nor-L-arginine (Nor-NOHA). Am J Physiol 292:G512-517

    CAS  Google Scholar 

  • Rhoads JM, Corl BA, Harrell R, Niu X, Gatlin L, Phillips O, Blikslager A, Moeser A, Wu G, Odle J (2007) Intestinal ribosomal p70s6k signaling is increased in piglet rotavirus enteritis. Am J Physiol 292:G913-922

    CAS  Google Scholar 

  • Ruderman N, Prentki M (2004) AMP kinase and malonyl-CoA targets for therapy of the metabolic syndrome. Nat Rev Drug Discov 3:340–351

    CAS  PubMed  Google Scholar 

  • San Martín A, Arce-Molina R, Galaz A, Pérez-Guerra G, Felipe Barros L (2017) Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J Biol Chem 292:9432–9438

    PubMed  PubMed Central  Google Scholar 

  • Sansbury BE, Hill BG (2014) Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 73:383–399

    CAS  PubMed  Google Scholar 

  • Satterfield MC, Dunlap KA, Keisler DH, Bazer FW, Wu G (2012) Arginine nutrition and fetal brown adipose tissue development in diet-induced obese sheep. Amino Acids 43:1593–1603

    Google Scholar 

  • Schuman EM, Madison DV (1991) A requirement for the intercellular messenger nitric oxide in long-term potentiation. Science 254:1503–1506

    CAS  PubMed  Google Scholar 

  • Sellmann C, Degen C, Jin CJ, Nier A, Engstler AJ, Alkhatib DH, De Bandt J-P, Bergheim I (2017) Oral arginine supplementation protects female mice from the onset of non-alcoholic steatohepatitis. Amino Acids 49:1215–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi W, Meininger CJ, Haynes TE, Hatakeyama K, Wu G (2004) Regulation of tetrahydrobiopterin synthesis and bioavailability in endothelial cells. Cell Biochem Biophys 41:415–433

    CAS  PubMed  Google Scholar 

  • Szlas A, Kurek JM, Krejpco Z (2022) The potential of L-arginine in prevention and treatment of disturbed carbohydrate and lipid metabolism—a review. Nutrients 14:961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan B, Yin Y, Liu Z, Tang W, Xu H, Kong X, Xi L, Yao K, Gu W, Smith SB, Wu G (2011) Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J Nutr Biochem 22:441–445

    CAS  PubMed  Google Scholar 

  • Viollet B, Foretz M, Guigas B, Horman S, Dentin R, Bertrand L, Hue L, Andreelli F (2006) Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J Physiol 574:41–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang YX, Watford M (2007) Glutamine, insulin and glucocorticoids regulate glutamine synthetase expression in C2C12 myotubes, Hep G2 hepatoma cells and 3T3 L1 adipocytes. Biochim Biophys Acta 1770:594–600

    CAS  PubMed  Google Scholar 

  • Wang JJ, Chen LX, Li DF, Yin YL, Wang XQ, Li P, Dangott LJ, Hu WX, Wu G (2008) Intrauterine growth restriction affects the proteomes of the small intestine, liver and skeletal muscle in newborn pigs. J Nutr 138:60–66

    CAS  PubMed  Google Scholar 

  • Williams G, Brown T, Becker L, Prager M, Giroir BP (1994) Cytokine-induced expression of nitric oxide synthase in C2C12 skeletal muscle myocytes. Am J Physiol 267:R1020-1025

    CAS  PubMed  Google Scholar 

  • Wu G (2022) Amino acids: biochemistry and nutrition, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Wu G, Meininger CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22:61–86

    CAS  PubMed  Google Scholar 

  • Wu G, Morris SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Thompson JR (1990) The effect of glutamine on protein turnover in chick skeletal muscle in vitro. Biochem J 265:593–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Yan W, Flynn NE (1995) Glutamine and glucose metabolism in enterocytes of the neonatal pig. Am J Physiol 268:R334-342

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Tuo W, Flynn SP (1996) Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol Reprod 54:1261–1265

    CAS  PubMed  Google Scholar 

  • Wu G, Pond WG, Ott T, Bazer FW (1998) Maternal dietary protein deficiency decreases amino acid concentrations in fetal plasma and allantoic fluid of pigs. J Nutr 128:894–902

    CAS  PubMed  Google Scholar 

  • Wu G, Flynn NE, Flynn SP, Jolly CA, Davis PK (1999) Dietary protein or arginine deficiency impairs constitutive and inducible nitric oxide synthesis by young rats. J Nutr 129:1347–1354

    CAS  PubMed  Google Scholar 

  • Wu G, Haynes TE, Li H, Yan W, Meininger CJ (2001) Glutamine metabolism to glucosamine is necessary for glutamine inhibition of endothelial nitric oxide synthesis. Biochem J 353:245–252

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004a) Arginine nutrition in neonatal pigs. J Nutr 134:2783S-2790S

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Stephen B. Smith and Dr. Cynthia J. Meininger for helpful discussions, as well as Mr. Scott Jobgen for assistance in laboratory analyses of metabolites. This research was supported by grants from American Heart Association–Texas (#0755024Y and 10GRNT4480020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

Established cell lines available from commercial companies were used for this study. Thus, the present work did not require the approval for the use of animals by Institutional Animal Care and Use Committee of Texas A&M University.

Informed consent

No informed consent is required for this study.

Additional information

Handling editor: E. Ildicho Closs.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jobgen, W.S., Wu, G. l-Arginine increases AMPK phosphorylation and the oxidation of energy substrates in hepatocytes, skeletal muscle cells, and adipocytes. Amino Acids 54, 1553–1568 (2022). https://doi.org/10.1007/s00726-022-03195-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-022-03195-9

Keywords

Navigation