Areias M, Shimizu K, Compton RG (2016) Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach. Analyst 141:2904–2910. https://doi.org/10.1039/C6AN00550K
CAS
Article
PubMed
Google Scholar
Arrigan D (2013) Voltammetry of proteins at liquid–liquid interfaces. Annu Rep Prog Chem Sect C Phys Chem 109:167–88. https://doi.org/10.1039/C3PC90007J
CAS
Article
Google Scholar
Arrigan DWM, Herzog G (2017) Theory of electrochemistry at miniaturised interfaces between two immiscible electrolyte solutions. Curr Opin Electrochem 1(1):66–72. https://doi.org/10.1016/j.coelec.2017.01.003
CAS
Article
Google Scholar
Diba FS, Lee HJ (2016) Amperometric sensing of sodium, calcium and potassium in biological fluids using a microhole supported liquid/gel interface. J Electroanal Chem 769:5–10. https://doi.org/10.1016/j.jelechem.2016.02.045
CAS
Article
Google Scholar
Dvořák O, Mareček V, Samec Z (1991) Selective complexation of biogenic aminesby macrocyclic polyethers at a liquid/liquid interface. J Electroanal Chem 300:407–413. https://doi.org/10.1016/0022-0728(91)85407-G
Article
Google Scholar
Enomoto AC, Schneider E, McKinnon T, Goldfine H, Levy MA (2020) Validation of a simplified procedure for convenient and rapid quantification of reduced and oxidized glutathione in human plasma by liquid chromatography tandem mass spectrometry analysis. Biomed Chromatogr 34(9):e4854. https://doi.org/10.1002/bmc.4854
CAS
Article
PubMed
PubMed Central
Google Scholar
Fialaire A, Postaire E, Prognon P, Pradier F, Pradeau D (1992) Thermal decomposition of reduced glutathione in solution for organ preservation. J Pharm Biomed Anal 10(6):457–460. https://doi.org/10.1016/0731-7085(92)80064-T
CAS
Article
PubMed
Google Scholar
Goh E, Lee HJ (2016) Applications of electrochemistry at liquid/liquid interfaces for ionizable drug molecule sensing. Rev Polarogr 62(2/3):77–84. https://doi.org/10.5189/revpolarography.62.77
Article
Google Scholar
Gulaboski R, Mirčeski V, Scholz F (2003) Determination of the standart Gibbs energies of transfer of cations and anions of amino acids and small peptides across the water nitrobenzene interface. Amino Acids 24:149–154. https://doi.org/10.1007/s00726-002-0320-x
CAS
Article
PubMed
Google Scholar
Haddad M, Herve V, Raâfet M, Khedher B, Rabanel JM, Ramassamy C (2021) Glutathione: an old and small molecule with great functions and new applications in the brain and in alzheimer’s disease. Antioxid Redox Signal 35(4):20–92. https://doi.org/10.1089/ars.2020.8129
CAS
Article
Google Scholar
Hamad A, Elshahawy M, Negm A, Mansour FR (2019) Analytical methods for determination of glutathione and glutathione disulfide in pharmaceuticals and biological fluids. Rev Anal Chem 38(4):20190019. https://doi.org/10.1515/revac-2019-0019
CAS
Article
Google Scholar
Harfield JC, Batchelor-McAuleya C, Compton RG (2012) Electrochemical determination of glutathione: a review. Analyst 137:2285–2296. https://doi.org/10.1039/C2AN35090D
CAS
Article
PubMed
Google Scholar
Herzog G, Arrigan DWM (2007) Electrochemical strategies for the label-free detection of amino acids, peptides and proteins. Analyst 132:615–32. https://doi.org/10.1039/B701472D
CAS
Article
PubMed
Google Scholar
Hiraoka M (1992) Crown ethers and analogous compounds. Elsevier Science Publishers B.V, Amsterdam
Google Scholar
Huang TH, Kuwana T, Warsinke A (2002) Analysis of thiols with tyrosinase-modified carbon paste electrodes based on blocking of substrate recycling. Biosens Bioelectron 17:1107–1113. https://doi.org/10.1016/S0956-5663(02)00105-7
CAS
Article
PubMed
Google Scholar
Lee HJ (1997) Amperometric ion sensors based on laser-patterned composite polymer membranes. J Electroanal Chem 440:73–82. https://doi.org/10.1016/S0022-0728(97)80042-3
CAS
Article
Google Scholar
Liu T, Zhou M, Pu Y et al (2021) Silver nanoparticle-functionalized 3D flower-like copper (II)-porphyrin framework nanocomposites as signal enhancers for fabricating a sensitive glutathione electrochemical sensor. Sens Actuators B Chem 342:1–8. https://doi.org/10.1016/j.snb.2021.130047
CAS
Article
Google Scholar
Macca C, Wang J (1995) Experimental procedures for the determination of amperometric selectivity coefficients. Anal Chim Acta 303:265–274. https://doi.org/10.1016/0003-2670(94)00511-J
CAS
Article
Google Scholar
Martynov LY, Naumova AO, Zaitsev NK (2016) Determination of a polyhexamethylene guanidine by voltammetry at an interface between two Immiscible electrolyte solutions. J Anal Chem 71(11):1120–1125. https://doi.org/10.1134/S1061934816110095
CAS
Article
Google Scholar
Martynov LY, Lopatukhin EV, Astafyev AA, Shakhov AM, Nadtochenko VA, Zaitsev NK (2018) Amperometric determination of perrhenate anion using a microscopic interfaces between two immiscible electrolyte solutions. Tonkie khimicheskie tekhnologii (Fine Chem Technol) 13(4):5–16. https://doi.org/10.32362/2410-6593-2018-13-4-5-16
CAS
Article
Google Scholar
Milton CB, Xu K, Shen M (2022) Recent advances in nanoelectrochemistry at the interface between two immiscible electrolyte solutions. Curr Opin Electrochem. https://doi.org/10.1016/j.coelec.2022.101005
Article
Google Scholar
Molina A, Torralba E, Serna C, Ortuño JA (2013) Analytical solution for the facilitated ion transfer at the interface between two immiscible electrolyte solutions via successive complexation reactions in any voltammetric technique: application to square wave voltammetry and cyclic voltammetry. Electrochim Acta 106:244–257. https://doi.org/10.1016/j.electacta.2013.05.080
CAS
Article
Google Scholar
Nekrassova O, White PC, Threlfell S et al (2002) An electrochemical adaptation of Ellman’s test. Analyst 127:797–802. https://doi.org/10.1039/B202780C
CAS
Article
PubMed
Google Scholar
Osakai T, Hirai T, Wakamiya T, Sawada S (2006) Quantitative analysis of the structure–hydrophobicity relationship for di- and tripeptides based on voltammetric measurements with an oil/water interface. Phys Chem Chem Phys 8:985–993. https://doi.org/10.1039/B513335A
CAS
Article
PubMed
Google Scholar
Parker AJ (1976) Solvation of ions-enthalpies, entropies and free energies of transfer. Electrochim Acta 21(9):671–679. https://doi.org/10.1016/0013-4686(76)85035-9
CAS
Article
Google Scholar
Perlzweig W, Delrue G (1927) The use of the Starch-iodine end-point in Tunnicliffe’s method for the determination of glutathione in tissues. J Biochem 21(6):1416–1418. https://doi.org/10.1042/bj0211416
CAS
Article
Google Scholar
Piggott AM, Karuso P (2007) Fluorometric assay for the determination of glutathione reductase activity. Anal Chem 79(22):8769–8773. https://doi.org/10.1021/ac071518p
CAS
Article
PubMed
Google Scholar
Raoof JB, Ojani R, Kolbadinezhad M (2009) Voltammetric sensor for glutathione determination based on ferrocene-modified carbon paste electrode. J Solid State Electrochem 13:1411–1416. https://doi.org/10.1007/s10008-008-0690-4
CAS
Article
Google Scholar
Safavi A, Maleki N, Farjami E, Mahyari FA (2009) Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode. Anal Chem 81:7538–7543. https://doi.org/10.1021/ac900501j
CAS
Article
PubMed
Google Scholar
Sairi M, Arrigan DWM (2015) Electrochemical detection of ractopamine at arrays of micro-liquid | liquid interfaces. Talanta 132:205–214. https://doi.org/10.1016/j.talanta.2014.08.060
CAS
Article
PubMed
Google Scholar
Saito Y (1968) A theoretical study on the diffusion current at the stationary electrodes of circular and narrow band types. Rev Polarogr 15(6):177–187. https://doi.org/10.5189/revpolarography.15.177
CAS
Article
Google Scholar
Samec Z, Samcov E, Girault HH (2004) Ion amperometry at the interface between two immiscible electrolyte solutions in view of realizing the amperometric ion- selective electrode. Talanta 63(1):21–32. https://doi.org/10.1016/j.talanta.2003.11.023
CAS
Article
PubMed
Google Scholar
Schmickler W, Santos E (2010) Interfacial electrochemistry, 2nd edn. Oxford University Press
Book
Google Scholar
Sovado I, Martin RB (1981) Transition metal ion induced deprotonation of amide hydrogens in sulfhydryl containing compounds. J Inorg Nucl Chem 43:425–429. https://doi.org/10.1016/0022-1902(81)90047-6
Article
Google Scholar
Tian H, Li Y, Shao H, Yu HZ (2015) Thin-film voltammetry and its analytical applications: a review. Anal Chim Acta 855:1–12. https://doi.org/10.1016/j.aca.2014.06.030
CAS
Article
PubMed
Google Scholar
Torralba E, Ortũno JA, Molina A, Serna C, Karimian F (2014) Facilitated ion transfer of protonated primary organic amines studied by square wave voltammetry and chronoamperometry. Anal Chim Acta 826:12–20. https://doi.org/10.1016/j.aca.2014.04.009
CAS
Article
PubMed
Google Scholar
Tsiasioti A, Georgiadou E, Zacharis CK, Tzanavaras PD (2022) Development and validation of a direct HPLC method for the determination of salivary glutathione disulphide using a core shell column and post column derivatization with o-phthalaldehyde. J Chromatogr B 1197:123216. https://doi.org/10.1016/j.foodchem.2022.132756
CAS
Article
Google Scholar
Wang W, Li L, Liu S, Ma C, Zhang S (2008) Determination of physiological thiols by electrochemical detection with piazselenole and its application in rat breast cancer cells 4T–1. J Am Chem Soc 130(33):10846–10847. https://doi.org/10.1021/ja802273p
CAS
Article
PubMed
Google Scholar
Wilke S, Zerihun T (2001) Standard Gibbs energies of ion transfer across the water/2-nitrophenyl octyl ether interface. J Electroanal Chem 515:52–60. https://doi.org/10.1016/S0022-0728(01)00640-4
CAS
Article
Google Scholar
Yong C, Yi Y, Meiqin Z et al (2004) Systematic study of the transfer of amino acids across the water/1,2-dichloroethane interface facilitated by dibenzo-18-crown-6. Sci China Ser B Chem 47:24–33
Article
Google Scholar
Zheng X, Duan C, Shen J, Duan X (2015) Determination of reduced glutathione by spectrophotometry coupled with anti-interference compensation. Anal Methods 7:5006–5011. https://doi.org/10.1039/C5AY00825E
CAS
Article
Google Scholar