Knocking down raptor in human keratinocytes affects ornithine decarboxylase in a post-transcriptional Manner following ultraviolet B exposure

Abstract

Non-melanoma skin cancer (NMSC) is the most common form of cancer. Ultraviolet-B (UVB) radiation has been shown to be a complete carcinogen in the development of NMSC. The mammalian target of rapamycin complex 1 (mTORC1) is upregulated by UVB. Ornithine decarboxylase (ODC), the first enzyme of the polyamine biosynthetic pathway, is also upregulated in response to UVB. However, the interplay between these two pathways after UVB exposure remains unclear. The studies described here compare mRNA stability between normal human keratinocytes (HaCaT cells) and HaCaT cells with low levels of raptor to investigate whether the induction of ODC by UVB is dependent on mTORC1. We show that the knockdown of mTORC1 activity led to decreased levels of ODC protein both before and after exposure to 20 mJ/cm2 UVB. ODC mRNA was less stable in cells with decreased mTORC1 activity. Polysome profiles revealed that the initiation of ODC mRNA translation did not change in UVB-treated cells. We have shown that the ODC transcript is stabilized by the RNA-binding protein human antigen R (HuR). To expand these studies, we investigated whether HuR functions to regulate ODC mRNA stability in human keratinocytes exposed to UVB. We show an increased cytoplasmic localization of HuR after UVB exposure in wild-type cells. The ablation of HuR via CRISPR/Cas9 did not alter the stability of the ODC message, suggesting the involvement of other trans-acting factors. These data suggest that in human keratinocytes, ODC mRNA stability is regulated, in part, by an mTORC1-dependent mechanism after UVB exposure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alayev A, Holz MK (2013) mTOR signaling for biological control and cancer. J Cell Physiol 228(8):1658–1664. https://doi.org/10.1002/jcp.24351

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. American Cancer Society (2016) Cancer facts and figures 2016

  3. Bowden GT (2004) Prevention of non-melanoma skin cancer by targeting ultraviolet-B-light signalling. Nat Rev Cancer 4(1):23–35. https://doi.org/10.1038/nrc1253

    CAS  Article  PubMed  Google Scholar 

  4. Campistol JM, Eris J, Oberbauer R, Friend P, Hutchison B, Morales JM, Claesson K, Stallone G, Russ G, Rostaing L, Kreis H, Burke JT, Brault Y, Scarola JA, Neylan JF (2006) Sirolimus therapy after early cyclosporine withdrawal reduces the risk for cancer in adult renal transplantation. J Am Soc Nephrol 17(2):581–589. https://doi.org/10.1681/ASN.2005090993

    CAS  Article  PubMed  Google Scholar 

  5. Carr TD, DiGiovanni J, Lynch CJ, Shantz LM (2012) Inhibition of mTOR suppresses UVB-induced keratinocyte proliferation and survival. Cancer Prev Res (Phila) 5(12):1394–1404. https://doi.org/10.1158/1940-6207.CAPR-12-0272-T

    CAS  Article  Google Scholar 

  6. Carr TD, Feehan RP, Hall MN, Ruegg MA, Shantz LM (2015) Conditional disruption of rictor demonstrates a direct requirement for mTORC2 in skin tumor development and continued growth of established tumors. Carcinogenesis 36(4):487–497. https://doi.org/10.1093/carcin/bgv012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Casero RA Jr, Murray Stewart T, Pegg AE (2018) Polyamine metabolism and cancer: treatments, challenges and opportunities. Nat Rev Cancer 18(11):681–695. https://doi.org/10.1038/s41568-018-0050-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Chen SJ, Nakahara T, Takahara M, Kido M, Dugu L, Uchi H, Takeuchi S, Tu YT, Moroi Y, Furue M (2009) Activation of the mammalian target of rapamycin signalling pathway in epidermal tumours and its correlation with cyclin-dependent kinase 2. Br J Dermatol 160(2):442–445. https://doi.org/10.1111/j.1365-2133.2008.08903.x

    Article  PubMed  Google Scholar 

  9. Feehan RP, Shantz LM (2016) Negative regulation of the FOXO3a transcription factor by mTORC2 induces a pro-survival response following exposure to ultraviolet-B irradiation. Cell Signal 28(8):798–809. https://doi.org/10.1016/j.cellsig.2016.03.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Feehan RP, Nelson AM, Shantz LM (2018) Inhibition of mTORC2 enhances UVB-induced apoptosis in keratinocytes through a mechanism dependent on the FOXO3a transcriptional target NOXA but independent of TRAIL. Cell Signal 52:35–47. https://doi.org/10.1016/j.cellsig.2018.08.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fernau NS, Fugmann D, Leyendecker M, Reimann K, Grether-Beck S, Galban S, Ale-Agha N, Krutmann J, Klotz LO (2010) Role of HuR and p38MAPK in ultraviolet B-induced post-transcriptional regulation of COX-2 expression in the human keratinocyte cell line HaCaT. J Biol Chem 285(6):3896–3904. https://doi.org/10.1074/jbc.M109.081430

    CAS  Article  PubMed  Google Scholar 

  12. Gerner EW, Meyskens FL Jr (2004) Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4(10):781–792. https://doi.org/10.1038/nrc1454

    CAS  Article  PubMed  Google Scholar 

  13. Gilmour SK (2007) Polyamines and nonmelanoma skin cancer. Toxicol Appl Pharmacol 224(3):249–256. https://doi.org/10.1016/j.taap.2006.11.023

    CAS  Article  PubMed  Google Scholar 

  14. Guan BJ, Krokowski D, Majumder M, Schmotzer CL, Kimball SR, Merrick WC, Koromilas AE, Hatzoglou M (2014) Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2a. J Biol Chem 289(18):12593–12611. https://doi.org/10.1074/jbc.M113.543215

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Huang K, Fingar DC (2014) Growing knowledge of the mTOR signaling network. Semin Cell Dev Biol 36:79–90. https://doi.org/10.1016/j.semcdb.2014.09.011

    CAS  Article  PubMed  Google Scholar 

  16. Huang C, Li J, Ke Q, Leonard SS, Jiang BH, Zhong XS, Costa M, Castranova V, Shi X (2002) Ultraviolet-induced phosphorylation of p70(S6K) at Thr(389) and Thr(421)/Ser(424) involves hydrogen peroxide and mammalian target of rapamycin but not Akt and atypical protein kinase C. Cancer Res 62(20):5689–5697

    CAS  PubMed  Google Scholar 

  17. Kawai T, Fan J, Mazan-Mamczarz K, Gorospe M (2004) Global mRNA stabilization preferentially linked to translational repression during the endoplasmic reticulum stress response. Mol Cell Biol 24(15):6773–6787. https://doi.org/10.1128/MCB.24.15.6773-6787.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, Gorospe M (2006) Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol 26(8):3295–3307. https://doi.org/10.1128/MCB.26.8.3295-3307.2006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149(2):274–293. https://doi.org/10.1016/j.cell.2012.03.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Madan V, Lear JT, Szeimies RM (2010) Non-melanoma skin cancer. Lancet 375(9715):673–685. https://doi.org/10.1016/S0140-6736(09)61196-X

    CAS  Article  PubMed  Google Scholar 

  21. Nowotarski SL, Shantz LM (2010) Cytoplasmic accumulation of the RNA-binding protein HuR stabilizes the ornithine decarboxylase transcript in a murine nonmelanoma skin cancer model. J Biol Chem 285(41):31885–31894. https://doi.org/10.1074/jbc.M110.148767

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Nowotarski SL, Woster PM, Casero RA Jr (2013) Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15:e3. https://doi.org/10.1017/erm.2013.3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Nowotarski SL, Feith DJ, Shantz LM (2015) Skin carcinogenesis studies using mouse models with altered polyamines. Cancer Growth Metastasis 8(Suppl 1):17–27. https://doi.org/10.4137/CGM.S21219

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nowotarski SL, Feehan RP, Presloid C, Shantz LM (2018) Knockout of Raptor destabilizes ornithine decarboxylase mRNA and decreases binding of HuR to the ODC transcript in cells exposed to ultraviolet-B irradiation. Biochem Biophys Res Commun 505(4):1022–1026. https://doi.org/10.1016/j.bbrc.2018.10.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. O’Brien TG (1976) The induction of ornithine decarboxylase as an early, possibly obligatory, event in mouse skin carcinogenesis. Cancer Res 36(7 PT 2):2644–2653

    PubMed  Google Scholar 

  26. O’Brien TG, Megosh LC, Gilliard G, Soler AP (1997) Ornithine decarboxylase overexpression is a sufficient condition for tumor promotion in mouse skin. Cancer Res 57(13):2630–2637

    PubMed  Google Scholar 

  27. Origanti S, Shantz LM (2007) Ras transformation of RIE-1 cells activates cap-independent translation of ornithine decarboxylase: regulation by the Raf/MEK/ERK and phosphatidylinositol 3-kinase pathways. Cancer Res 67(10):4834–4842. https://doi.org/10.1158/0008-5472.CAN-06-4627

    CAS  Article  PubMed  Google Scholar 

  28. Origanti S, Nowotarski SL, Carr TD, Sass-Kuhn S, Xiao L, Wang JY, Shantz LM (2012) Ornithine decarboxylase mRNA is stabilized in an mTORC1-dependent manner in Ras-transformed cells. Biochem J 442(1):199–207. https://doi.org/10.1042/BJ20111464

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Patrick MH (1977) Studies on thymine-derived UV photoproducts in DNA—I. Formation and biological role of pyrimidine adducts in DNA. Photochem Photobiol 25(4):357–372

    CAS  Article  Google Scholar 

  30. Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, Ruegg MA, Hall MN, Meyuhas O (2009) The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 29(3):640–649. https://doi.org/10.1128/MCB.00980-08

    CAS  Article  PubMed  Google Scholar 

  31. Rogers HW, Weinstock MA, Harris AR, Hinckley MR, Feldman SR, Fleischer AB, Coldiron BM (2010) Incidence estimate of nonmelanoma skin cancer in the United States, 2000. Arch Dermatol 146(3):283–287. https://doi.org/10.1001/archdermatol.2010.19

    Article  PubMed  Google Scholar 

  32. Rosen CF, Gajic D, Drucker DJ (1990a) Ultraviolet radiation induction of ornithine decarboxylase in rat keratinocytes. Cancer Res 50(9):2631–2635

    CAS  PubMed  Google Scholar 

  33. Rosen CF, Gajic D, Jia Q, Drucker DJ (1990b) Ultraviolet B radiation induction of ornithine decarboxylase gene expression in mouse epidermis. Biochem J 270(3):565–568

    CAS  Article  Google Scholar 

  34. Shantz LM (2004) Transcriptional and translational control of ornithine decarboxylase during Ras transformation. Biochem J 377(Pt 1):257–264

    CAS  Article  Google Scholar 

  35. Zabala-Letona A, Arruabarrena-Aristorena A, Martin-Martin N, Fernandez-Ruiz S, Sutherland JD, Clasquin M, Tomas-Cortazar J, Jimenez J, Torres I, Quang P, Ximenez-Embun P, Bago R, Ugalde-Olano A, Loizaga-Iriarte A, Lacasa-Viscasillas I, Unda M, Torrano V, Cabrera D, van Liempd SM, Cendon Y, Castro E, Murray S, Revandkar A, Alimonti A, Zhang Y, Barnett A, Lein G, Pirman D, Cortazar AR, Arreal L, Prudkin L, Astobiza I, Valcarcel-Jimenez L, Zuniga-Garcia P, Fernandez-Dominguez I, Piva M, Caro-Maldonado A, Sanchez-Mosquera P, Castillo-Martin M, Serra V, Beraza N, Gentilella A, Thomas G, Azkargorta M, Elortza F, Farras R, Olmos D, Efeyan A, Anguita J, Munoz J, Falcon-Perez JM, Barrio R, Macarulla T, Mato JM, Martinez-Chantar ML, Cordon-Cardo C, Aransay AM, Marks K, Baselga J, Tabernero J, Nuciforo P, Manning BD, Marjon K, Carracedo A (2017) mTORC1-dependent AMD1 regulation sustains polyamine metabolism in prostate cancer. Nature 547(7661):109–113. https://doi.org/10.1038/nature22964

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Scot Kimball (Penn State College of Medicine) for his help with the polysome profiles. Work in the authors’ laboratory was funded by grants from the National Institutes of Health (ES19242 to LMS, ES26471 to RPF) and funds from Penn State Berks to SLN.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Nowotarski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors. This article does not contain any studies with animals performed by any of the authors.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stump, C.L., Feehan, R.P., Jordan, T. et al. Knocking down raptor in human keratinocytes affects ornithine decarboxylase in a post-transcriptional Manner following ultraviolet B exposure. Amino Acids 52, 141–149 (2020). https://doi.org/10.1007/s00726-019-02732-3

Download citation

Keywords

  • Ornithine decarboxylase
  • mTOR
  • Post-transcriptional regulation
  • mRNA stability