The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae

Abstract

Agmatine, a natural polyamine produced from arginine by arginine decarboxylase, was first discovered in 1910, but its physiological significance was disregarded for a century. The recent rediscovery of agmatine as an endogenous ligand for α2-adrenergic and imidazoline receptors in the mammalian brain suggests that this amine may be a promising therapeutic agent for treating a broad spectrum of central nervous system-associated diseases. In the past two decades, numerous preclinical and several clinical studies have demonstrated its pleiotropic modulatory functions on various molecular targets related to neurotransmission, nitric oxide synthesis, glucose metabolism, polyamine metabolism, and carnitine biosynthesis, indicating potential for therapeutic applications and use as a nutraceutical to improve quality of life. An enzymatic activity of arginine decarboxylase which produces agmatine from arginine was low in mammals, suggesting that a large portion of the agmatine is supplemented from diets and gut microbiota. In the present review, we focus on and concisely summarize the beneficial effects of agmatine for treating depression, anxiety, neuropathic pain, cognitive decline and learning impairment, dependence on drugs, and metabolic diseases (diabetes and obesity), since these fields have been intensively investigated. We also briefly discuss agmatine content in foodstuffs, and a simple approach for enhancing agmatine production using the filamentous fungus Aspergillus oryzae, widely used for the production of various Asian fermented foods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agostinelli E (2012) Role of polyamines, their analogs and transglutaminases in biological and clinical perspectives. Amino Acids 42:397–409. https://doi.org/10.1007/s00726-011-1129-2

    CAS  Article  PubMed  Google Scholar 

  2. Akao T, Yashiro I, Hosoyama A, Kitagaki H, Horikawa H, Watanabe D, Akada R, Ando Y, Harashima S, Inoue T, Inoue Y, Kajiwara S, Kitamoto K, Kitamoto N, Kobayashi O, Kuhara S, Masubuchi T, Mizoguchi H, Nakao Y, Nakazato A, Namise M, Oba T, Ogata T, Ohta A, Sato M, Shibasaki S, Takatsume Y, Tanimoto S, Tsuboi H, Nishimura A, Yoda K, Ishikawa T, Iwashita K, Fujita N, Shimoi H (2011) Whole-genome sequencing of sake yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Res 18:423–434. https://doi.org/10.1093/dnares/dsr029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Akasaka N, Higashikubo H, Ishii Y, Sakoda H, Fujiwara S (2017) Polyamines in brown rice vinegar function as potent attractants for the spotted wing drosophila. J Biosci Bioeng 123:78–83. https://doi.org/10.1016/j.jbiosc.2016.06.014

    CAS  Article  PubMed  Google Scholar 

  4. Akasaka N, Kato S, Kato S, Hidese R, Wagu Y, Sakoda H, Fujiwara S (2018) Agmatine production by Aspergillus oryzae is elevated by low pH during solid-state cultivation. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00722-18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Almeida C, Fernandes JO, Cunha SC (2012) A novel dispersive liquid-liquid microextraction (DLLME) gas chromatography-mass spectrometry (GC-MS) method for the determination of eighteen biogenic amines in beer. Food Control 25:380–388. https://doi.org/10.1016/j.foodcont.2011.10.052

    CAS  Article  Google Scholar 

  6. Arena ME, Manca de Nadra MC (2001) Biogenic amine production by Lactobacillus. J Appl Microbiol 90:158–162. https://doi.org/10.1046/j.1365-2672.2001.01223.x

    CAS  Article  PubMed  Google Scholar 

  7. Aricioglu F, Altunbas H (2003) Is agmatine an endogenous anxiolytic/antidepressant agent? Ann N Y Acad Sci 1009:136–140. https://doi.org/10.1196/annals.1304.014

    CAS  Article  PubMed  Google Scholar 

  8. Aricioglu-Kartal F, Regunathan S (2002) Effect of chronic morphine treatment on the biosynthesis of agmatine in rat brain and other tissues. Life Sci 71:1695–1701. https://doi.org/10.1016/S0024-3205(02)01911-2

    CAS  Article  PubMed  Google Scholar 

  9. Aricioglu-Kartal F, Uzbay IT (1997) Inhibitory effect of agmatine on naloxone-precipitated abstinence syndrome in morphine dependent rats. Life Sci 61:1775–1781. https://doi.org/10.1016/S0024-3205(97)00801-1

    CAS  Article  PubMed  Google Scholar 

  10. Arndt MA, Battaglia V, Parisi E, Lortie MJ, Isome M, Baskerville C, Pizzo DP, Ientile R, Colombatto S, Toninello A, Satriano J (2009) The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 296:C1411–C1419. https://doi.org/10.1152/ajpcell.00529.2008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Arteni NS, Lavinsky D, Rodrigues AL, Frison VB, Netto CA (2002) Agmatine facilitates memory of an inhibitory avoidance task in adult rats. Neurobiol Learn Mem 78:465–469. https://doi.org/10.1006/nlme.2002.4076

    CAS  Article  PubMed  Google Scholar 

  12. Balaraman Y, Limaye AR, Levey AI, Srinivasan S (2006) Glycogen synthase kinase 3β and Alzheimer’s disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226–1235. https://doi.org/10.1007/s00018-005-5597-y

    CAS  Article  PubMed  Google Scholar 

  13. Baños JG, Tomasini A, Szakács G, Barrios-González J (2009) High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J Biosci Bioeng 108:105–110. https://doi.org/10.1016/j.jbiosc.2009.03.006

    CAS  Article  PubMed  Google Scholar 

  14. Barrios-González J (2012) Solid-state fermentation: physiology of solid medium, its molecular basis and applications. Process Biochem 47:175–185. https://doi.org/10.1016/j.procbio.2011.11.016

    CAS  Article  Google Scholar 

  15. Barua S, Kim JY, Kim JY, Kim JH, Lee JE (2019) Therapeutic effect of agmatine on neurological disease: focus on ion channels and receptors. Neurochem Res. https://doi.org/10.1007/s11064-018-02712-1

    Article  PubMed  Google Scholar 

  16. Battaglia V, Grancara S, Satriano J, Saccoccio S, Agostinelli E, Toninello A (2010) Agmatine prevents the Ca2+-dependent induction of permeability transition in rat brain mitochondria. Amino Acids 38:431–437. https://doi.org/10.1007/s00726-009-0402-0

    CAS  Article  PubMed  Google Scholar 

  17. Benowitz NL (2010) Nicotine addiction. N Engl J Med 362:2295–2303. https://doi.org/10.1056/NEJMra0809890

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bergin DH, Liu P (2010) Agmatine protects against β-amyloid25-35-induced memory impairments in the rat. Neuroscience 169:794–811. https://doi.org/10.1016/j.neuroscience.2010.05.004

    CAS  Article  PubMed  Google Scholar 

  19. Bhutada P, Mundhada Y, Humane V, Rahigude A, Deshmukh P, Latad S, Jain K (2012) Agmatine, an endogenous ligand of imidazoline receptor protects against memory impairment and biochemical alterations in streptozotocin-induced diabetic rats. Prog Neuropsychopharmacol Biol Psychiatry 37:96–105. https://doi.org/10.1016/j.pnpbp.2012.01.009

    CAS  Article  PubMed  Google Scholar 

  20. Bischoff F, Sahyun M, Long ML (1929) Guanidine structure and hypoglycemia. Biol Chem 81:325–349

    CAS  Google Scholar 

  21. Bokulich NA, Ohta M, Lee M, Mills DA (2014) Indigenous bacteria and fungi drive traditional kimoto sake fermentations. Appl Environ Microbiol 80:5522–5529. https://doi.org/10.1128/AEM.00663-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Bover-Cid S, Iquierdo-Pulido M, Mariné-Font A, Vidal-Carou MC (2006) Biogenic mono-, di- and polyamine contents in Spanish wines and influence of a limited irrigation. Food Chem 96:43–47. https://doi.org/10.1016/j.foodchem.2005.01.054

    CAS  Article  Google Scholar 

  23. Byun BY, Mah JH (2012) Occurrence of biogenic amines in Miso, Japanese traditional fermented soybean paste. J Food Sci 77:T216–T223. https://doi.org/10.1111/j.1750-3841.2012.02983.x

    CAS  Article  PubMed  Google Scholar 

  24. Cabella C, Gardini G, Corpillo D, Testore G, Bedino S, Solinas SP, Cravanzola C, Vargiu C, Grillo MA, Colombatto S (2001) Transport and metabolism of agmatine in rat hepatocyte cultures. Eur J Biochem 268:940–947. https://doi.org/10.1046/j.1432-1327.2001.01955.x

    CAS  Article  PubMed  Google Scholar 

  25. Cameron AT (1928) The search for insulin substitutes. Can Med Assoc J 18:69–71

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Caruso M, Fiore C, Contursi M, Salzano G, Paparella A, Romano P (2002) Formation of biogenic amines as criteria for the selection of wine yeasts. World J Microbiol Biotechnol 18:159–163. https://doi.org/10.1023/A:1014451728868

    CAS  Article  Google Scholar 

  27. Chang CH, Wu HT, Cheng KC, Lin HJ, Cheng JT (2010) Increase of β-endorphin secretion by agmatine is induced by activation of imidazoline I2A receptors in adrenal gland of rats. Neurosci Lett 468:297–299. https://doi.org/10.1016/j.neulet.2009.11.018

    CAS  Article  PubMed  Google Scholar 

  28. Chaplan SR, Malmberg AB, Yaksh TL (1997) Efficacy of spinal NMDA receptor antagonism in formalin hyperalgesia and nerve injury evoked allodynia in the rat. J Pharmacol Exp Ther 280:829–838

    CAS  PubMed  Google Scholar 

  29. Chen ZD, Chen WQ, Wang ZY, Cao DN, Wu N, Li J (2018) Antidepressant-like action of agmatine in the acute and sub-acute mouse models of depression: a receptor mechanism study. Metab Brain Dis 33:1721–1731. https://doi.org/10.1007/s11011-018-0280-9

    CAS  Article  PubMed  Google Scholar 

  30. Choi S, Lee J, Shukla S, Kim M (2012) Physiochemical properties and determination of biogenic amines in Korean microbrewery beer products. J Food Biochem 36:766–773. https://doi.org/10.1111/j.1745-4514.2012.00670.x

    CAS  Article  Google Scholar 

  31. Cinco P, Jing Y, Waldvogel HJ, Curtis MA, Zhang H, Abraham WC, Faull RLM, Liu P (2015) Arginine decarboxylase and agmatinase immunoreactivity in Alzheimer’s superior frontal gyrus. Alzheimers Dement 11:P773. https://doi.org/10.1016/j.jalz.2015.06.1721

    Article  Google Scholar 

  32. Cipolla BG, Havouis R, Moulinoux JP (2007) Polyamine contents in current foods: a basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids 33:203–212. https://doi.org/10.1007/s00726-007-0524-1

    CAS  Article  PubMed  Google Scholar 

  33. Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R (2011) Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75. https://doi.org/10.1111/j.1471-4159.2010.07085.x

    CAS  Article  PubMed  Google Scholar 

  34. Courteix C, Privat AM, Pélissier T, Hernandez A, Eschalier A, Fialip J (2007) Agmatine induces antihyperalgesic effects in diabetic rats and a superadditive interaction with R(-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid, a N-methyl-D-aspartate-receptor antagonist. J Pharmacol Exp Ther 322:1237–1245. https://doi.org/10.1124/jpet.107.123018

    CAS  Article  PubMed  Google Scholar 

  35. Craft S, Watson GS (2004) Insulin and neurodegenerative disease: shared and specific mechanisms. Lancet Neurol 3:169–178. https://doi.org/10.1016/S1474-4422(04)00681-7

    CAS  Article  PubMed  Google Scholar 

  36. De Borba BM, Rohrer JS (2007) Determination of biogenic amines in alcoholic beverages by ion chromatography with suppressed conductivity detection and integrated pulsed amperometric detection. J Chromatogr A 1155:22–30. https://doi.org/10.1016/j.chroma.2007.01.114

    CAS  Article  PubMed  Google Scholar 

  37. de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9:35–66. https://doi.org/10.2174/156720512799015037

    Article  PubMed  PubMed Central  Google Scholar 

  38. Deignan JL, Livesay JC, Yoo PK, Goodman SI, O’Brien WE, Iyer RK, Cederbaum SD, Grody WW (2006) Ornithine deficiency in the arginase double knockout mouse. Mol Genet Metab 89:87–96. https://doi.org/10.1016/j.ymgme.2006.04.007

    CAS  Article  PubMed  Google Scholar 

  39. Deignan JL, Livesay JC, Shantz LM, Pegg AE, O’Brien WE, Iyer RK, Cederbaum SD, Grody WW (2007) Polyamine homeostasis in arginase knockout mice. Am J Physiol Cell Physiol 293:C1296–C1301. https://doi.org/10.1152/ajpcell.00393.2006

    CAS  Article  PubMed  Google Scholar 

  40. Demady DR, Jianmongkol S, Vuletich JL, Bender AT, Osawa Y (2001) Agmatine enhances the NADPH oxidase activity of neuronal NO synthase and leads to oxidative inactivation of the enzyme. Mol Pharmacol 59:24–29. https://doi.org/10.1124/mol.59.1.24

    CAS  Article  PubMed  Google Scholar 

  41. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, Fussi H, Deszcz L, Hartl R, Schraml E, Criollo A, Megalou E, Weiskopf D, Laun P, Heeren G, Breitenbach M, Grubeck-Loebenstein B, Herker E, Fahrenkrog B, Fröhlich KU, Sinner F, Tavernarakis N, Minois N, Kroemer G, Madeo F (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314. https://doi.org/10.1038/ncb1975

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. El-Sherbeeny NA, Nader MA, Attia GM, Ateyya H (2016) Agmatine protects rat liver from nicotine-induced hepatic damage via antioxidative, antiapoptotic, and antifibrotic pathways. Naunyn Schmiedebergs Arch Pharmacol 389:1341–1351. https://doi.org/10.1007/s00210-016-1284-9

    CAS  Article  PubMed  Google Scholar 

  43. Fairbanks CA, Schreiber KL, Brewer KL, Yu CG, Stone LS, Kitto KF, Nguyen HO, Grocholski BM, Shoeman DW, Kehl LJ, Regunathan S, Reis DJ, Yezierski RP, Wilcox GL (2000) Agmatine reverses pain induced by inflammation, neuropathy, and spinal cord injury. Proc Natl Acad Sci USA 97:10584–10589. https://doi.org/10.1073/pnas.97.19.10584

    CAS  Article  PubMed  Google Scholar 

  44. Foster JW (2004) Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol 2:898–907. https://doi.org/10.1038/nrmicro1021

    CAS  Article  PubMed  Google Scholar 

  45. Fuell C, Elliott KA, Hanfrey CC, Franceschetti M, Michael AJ (2010) Polyamine biosynthetic diversity in plants and algae. Plant Physiol Biochem 48:513–520. https://doi.org/10.1016/j.plaphy.2010.02.008

    CAS  Article  PubMed  Google Scholar 

  46. Galgano F, Caruso M, Favati F, Romano P, Caruso M (2003) HPLC determination on agmatine and other amines in wine. J Int Sci Vigne Vin 37:237–242. https://doi.org/10.20870/oeno-one.2003.37.4.959

    CAS  Article  Google Scholar 

  47. Galgano F, Caruso M, Favati F (2009) Biogenic amines in wines: a review, Chap. 6. In: Byrne Paul O (ed) Red wine and health. Nova Science Publisher Inc., Hauppauge, pp 174–203

    Google Scholar 

  48. Galgano F, Caruso M, Perretti G, Favati F (2011) Authentication of Italian red wines on the basis of the polyphenols and biogenic amines. Eur Food Res Technol 232:889–897. https://doi.org/10.1007/s00217-011-1457-1

    CAS  Article  Google Scholar 

  49. Galgano F, Caruso M, Condelli N, Favati F (2012) Focused review: agmatine in fermented foods. Front Microbiol 3:199. https://doi.org/10.3389/fmicb.2012.00199

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gardini F, Özogul Y, Suzzi G, Tabanelli G, Özogul F (2016) Technological factors affecting biogenic amine content in foods: a review. Front Microbiol 7:1218. https://doi.org/10.3389/fmicb.2016.01218

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gawali NB, Bulani VD, Gursahani MS, Deshpande PS, Kothavade PS, Juvekar AR (2017) Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway. Brain Res 1663:66–77. https://doi.org/10.1016/j.brainres.2017.03.004

    CAS  Article  PubMed  Google Scholar 

  52. Gilad GM, Gilad VH (2014) Long-term (5 years), high daily dosage of dietary agmatine-evidence of safety: a case report. J Med Food 17:1256–1259. https://doi.org/10.1089/jmf.2014.0026

    Article  PubMed  Google Scholar 

  53. Gilad GM, Salame K, Rabey JM, Gilad VH (1996) Agmatine treatment is neuroprotective in rodent brain injury models. Life Sci 58:PL41–PL46. https://doi.org/10.1016/0024-3205(95)02274-0

    CAS  Article  Google Scholar 

  54. Glória MB, Tavares-Neto J, Labanca RA, Carvalho MS (2005) Influence of cultivar and germination on bioactive amines in soybeans (Glycine max L. Merril). J Agric Food Chem 53:7480–7485. https://doi.org/10.1021/jf0509310

    CAS  Article  PubMed  Google Scholar 

  55. Gong ZH, Li YF, Zhao N, Yang HJ, Su RB, Luo ZP, Li J (2006) Anxiolytic effect of agmatine in rats and mice. Eur J Pharmacol 550:112–116. https://doi.org/10.1016/j.ejphar.2006.08.057

    CAS  Article  PubMed  Google Scholar 

  56. Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KS, Schroeder S, Stunnenberg HG, Sinner F, Magnes C, Pieber TR, Dipt S, Fiala A, Schenck A, Schwaerzel M, Madeo F, Sigrist SJ (2013) Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16:1453–1460. https://doi.org/10.1038/nn.3512

    CAS  Article  PubMed  Google Scholar 

  57. Gutgesell A, Wen G, König B, Koch A, Spielmann J, Stangl GI, Eder K, Ringseis R (2009) Mouse carnitine-acylcarnitine translocase (CACT) is transcriptionally regulated by PPARα and PPARδ in liver cells. Biochim Biophys Acta 1790:1206–1216. https://doi.org/10.1016/j.bbagen.2009.06.012

    CAS  Article  PubMed  Google Scholar 

  58. Hamajima H, Matsunaga H, Fujikawa A, Sato T, Mitsutake S, Yanagita T, Nagao K, Nakayama J, Kitagaki H (2016) Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. Springerplus 5:1321. https://doi.org/10.1186/s40064-016-2950-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Horváth G, Kékesi G, Dobos I, Szikszay M, Klimscha W, Benedek G (1999) Effect of intrathecal agmatine on inflammation-induced thermal hyperalgesia in rats. Eur J Pharmacol 368:197–204. https://doi.org/10.1016/S0014-2999(99)00060-6

    Article  PubMed  Google Scholar 

  60. Ilgü H, Jeckelmann JM, Gapsys V, Ucurum Z, de Groot BL, Fotiadis D (2016) Insights into the molecular basis for substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Proc Natl Acad Sci USA 113:10358–10363. https://doi.org/10.1073/pnas.1605442113

    CAS  Article  PubMed  Google Scholar 

  61. Ishii Y, Akasaka N, Sakoda H, Hidese R, Fujiwara S (2018) Leucine responsive regulatory protein is involved in methionine metabolism and polyamine homeostasis in acetic acid bacterium Komagataeibacter europaeus. J Biosci Bioeng 125:67–75. https://doi.org/10.1016/j.jbiosc.2017.07.017

    CAS  Article  PubMed  Google Scholar 

  62. Iwagaki Y, Sakamoto Y, Sugawara S, Mizowaki Y, Yamamoto K, Sugawara T, Kimura K, Tsuduki T (2017) Identification of characteristic components and foodstuffs in healthy Japanese diet and the health effects of a diet with increased use frequency of these foodstuffs. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201700430

    Article  PubMed  Google Scholar 

  63. Kalač P (2014) Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem 161:27–39. https://doi.org/10.1016/j.foodchem.2014.03.102

    CAS  Article  PubMed  Google Scholar 

  64. Kalac̆ P, Krausová P (2005) A review of dietary polyamines: formation, implications for growth and health and occurrence in foods. Food Chem 90:219–230. https://doi.org/10.1016/j.foodchem.2004.03.044

    CAS  Article  Google Scholar 

  65. Kang S, Kim CH, Jung H, Kim E, Song HT, Lee JE (2017) Agmatine ameliorates type 2 diabetes induced-Alzheimer’s disease-like alterations in high-fat diet-fed mice via reactivation of blunted insulin signalling. Neuropharmacology 113:467–479. https://doi.org/10.1016/j.neuropharm.2016.10.029

    CAS  Article  PubMed  Google Scholar 

  66. Karadag HC, Ulugol A, Tamer M, Ipci Y, Dokmeci I (2003) Systemic agmatine attenuates tactile allodynia in two experimental neuropathic pain models in rats. Neurosci Lett 339:88–90. https://doi.org/10.1016/S0304-3940(02)01456-8

    CAS  Article  PubMed  Google Scholar 

  67. Kessler RC (1997) The effects of stressful life events on depression. Annu Rev Psychol 48:191–214. https://doi.org/10.1146/annurev.psych.48.1.191

    CAS  Article  PubMed  Google Scholar 

  68. Keynan O, Mirovsky Y, Dekel S, Gilad VH, Gilad GM (2010) Safety and efficacy of dietary agmatine sulfate in lumbar disc-associated radiculopathy. An open-label, dose-escalating study followed by a randomized, double-blind, placebo-controlled trial. Pain Med 11:356–368. https://doi.org/10.1111/j.1526-4637.2010.00808.x

    Article  PubMed  Google Scholar 

  69. Kim B, Byun BY, Mah JH (2012) Biogenic amine formation and bacterial contribution in Natto products. Food Chem 135:2005–2011. https://doi.org/10.1016/j.foodchem.2012.06.091

    CAS  Article  PubMed  Google Scholar 

  70. Kitada Y, Muramatsu K, Toju H, Kibe R, Benno Y, Kurihara S, Matsumoto M (2018) Bioactive polyamine production by a novel hybrid system comprising multiple indigenous gut bacterial strategies. Sci Adv 4:eaat0062. https://doi.org/10.1126/sciadv.aat0062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Kitanaka N, Kitanaka J, Hall FS, Uhl GR, Watabe K, Kubo H, Takahashi H, Tanaka K, Nishiyama N, Takemura M (2014) Agmatine attenuates methamphetamine-induced hyperlocomotion and stereotyped behavior in mice. Behav Pharmacol 25:158–165. https://doi.org/10.1097/FBP.0000000000000030

    CAS  Article  PubMed  Google Scholar 

  72. Kobayashi A, Sano M, Oda K, Hisada H, Hata Y, Ohashi S (2007) The glucoamylase-encoding gene (glaB) is expressed in solid-state culture with a low water content. Biosci Biotechnol Biochem 71:1797–1799. https://doi.org/10.1271/bbb.70132

    CAS  Article  PubMed  Google Scholar 

  73. Kolesnikov Y, Jain S, Pasternak GW (1996) Modulation of opioid analgesia by agmatine. Eur J Pharmacol 296:17–22. https://doi.org/10.1016/0014-2999(95)00669-9

    CAS  Article  PubMed  Google Scholar 

  74. Kossel A (1910) Über das agmatin. Z Physiol Chem 66:257–261. https://doi.org/10.1515/bchm2.1910.66.3.257

    Article  Google Scholar 

  75. Kotagale NR, Taksande BG, Wadhwani PJ, Palhade MW, Mendhi SM, Gawande DY, Hadole PN, Chopde CT (2012) Psychopharmacological study of agmatine in behavioral tests of schizophrenia in rodents. Pharmacol Biochem Behav 100:398–403. https://doi.org/10.1016/j.pbb.2011.09.006

    CAS  Article  PubMed  Google Scholar 

  76. Kotagale NR, Tripathi SJ, Aglawe MM, Chopde CT, Umekar MJ, Taksande BG (2013) Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test. Pharmacol Biochem Behav 107:42–47. https://doi.org/10.1016/j.pbb.2013.03.019

    CAS  Article  PubMed  Google Scholar 

  77. Kotagale NR, Chopde CT, Umekar MJ, Taksande BG (2015) Chronic agmatine treatment prevents behavioral manifestations of nicotine withdrawal in mice. Eur J Pharmacol 754:190–198. https://doi.org/10.1016/j.ejphar.2015.02.033

    CAS  Article  PubMed  Google Scholar 

  78. Kozová M, Kalač P, Pelikánová T (2009) Contents of biologically active polyamines in chicken meat, liver, heart and skin after slaughter and their changes during meat storage and cooking. Food Chem 116:419–425. https://doi.org/10.1016/j.foodchem.2009.02.057

    CAS  Article  Google Scholar 

  79. Krausová P, Kalač P, Křížek M, Pelikánová T (2006) Content of polyamines in beef and pork after animal slaughtering. Eur Food Res Technol 223:321–324. https://doi.org/10.1007/s00217-005-0206-8

    CAS  Article  Google Scholar 

  80. Kudlow P, Cha DS, Carvalho AF, McIntyre RS (2016) Nitric oxide and major depressive disorder: pathophysiology and treatment implications. Curr Mol Med 16:206–215. https://doi.org/10.2174/1566524016666160126144722

    CAS  Article  PubMed  Google Scholar 

  81. Kusano T, Suzuki H (2015) Polyamines: a universal molecular nexus for growth, survival, and specialized metabolism. Springer, London

    Google Scholar 

  82. Lamberti C, Purrotti M, Mazzoli R, Fattori P, Barello C, Coïsson JD, Giunta C, Pessione E (2011) ADI pathway and histidine decarboxylation are reciprocally regulated in Lactobacillus hilgardii ISE 5211: proteomic evidence. Amino Acids 41:517–527. https://doi.org/10.1007/s00726-010-0781-2

    CAS  Article  PubMed  Google Scholar 

  83. Landete JM, Arena ME, Pardo I, Manca de Nadra MC, Ferrer S (2008) Comparative survey of putrescine production from agmatine deamination in different bacteria. Food Microbiol 25:882–887. https://doi.org/10.1016/j.fm.2008.06.001

    CAS  Article  PubMed  Google Scholar 

  84. Laube G, Bernstein HG (2017) Agmatine: multifunctional arginine metabolite and magic bullet in clinical neuroscience? Biochem J 474:2619–2640. https://doi.org/10.1042/BCJ20170007

    CAS  Article  PubMed  Google Scholar 

  85. Lavinsky D, Arteni NS, Netto CA (2003) Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res 141:19–24. https://doi.org/10.1016/S0166-4328(02)00326-1

    CAS  Article  PubMed  Google Scholar 

  86. Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128. https://doi.org/10.1034/j.1399-5618.2002.01144.x

    CAS  Article  PubMed  Google Scholar 

  87. Leitch B, Shevtsova O, Reusch K, Bergin DH, Liu P (2011) Spatial learning-induced increase in agmatine levels at hippocampal CA1 synapses. Synapse 65:146–153. https://doi.org/10.1002/syn.20828

    CAS  Article  PubMed  Google Scholar 

  88. Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969. https://doi.org/10.1126/science.7906055

    CAS  Article  PubMed  Google Scholar 

  89. Li YF, Gong ZH, Cao JB, Wang HL, Luo ZP, Li J (2003) Antidepressant-like effect of agmatine and its possible mechanism. Eur J Pharmacol 469:81–88. https://doi.org/10.1016/S0014-2999(03)01735-7

    CAS  Article  PubMed  Google Scholar 

  90. Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. https://doi.org/10.1093/molbev/msr145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Liu IM, Cheng JT (2011) Mediation of endogenous β-endorphin in the plasma glucose-lowering action of herbal products observed in type 1-like diabetic rats. Evid Based Complement Altern Med 2011:987876. https://doi.org/10.1093/ecam/nen078

    CAS  Article  Google Scholar 

  92. Liu P, Collie ND, Chary S, Jing Y, Zhang H (2008a) Spatial learning results in elevated agmatine levels in the rat brain. Hippocampus 18:1094–1098. https://doi.org/10.1002/hipo.20482

    Article  PubMed  Google Scholar 

  93. Liu P, Rushaidhi M, Collie ND, Leong MT, Zhang H (2008b) Behavioral effects of intracerebroventricular microinfusion of agmatine in adult rats. Behav Neurosci 122:557–569. https://doi.org/10.1037/0735-7044.122.3.557

    CAS  Article  PubMed  Google Scholar 

  94. Liu P, Fleete MS, Jing Y, Collie ND, Curtis MA, Waldvogel HJ, Faull RL, Abraham WC, Zhang H (2014) Altered arginine metabolism in Alzheimer’s disease brains. Neurobiol Aging 35:1992–2003. https://doi.org/10.1016/j.neurobiolaging.2014.03.013

    CAS  Article  PubMed  Google Scholar 

  95. Machida M, Asai K, Sano M, Tanaka T, Kumagai T, Terai G, Kusumoto K, Arima T, Akita O, Kashiwagi Y, Abe K, Gomi K, Horiuchi H, Kitamoto K, Kobayashi T, Takeuchi M, Denning DW, Galagan JE, Nierman WC, Yu J, Archer DB, Bennett JW, Bhatnagar D, Cleveland TE, Fedorova ND, Gotoh O, Horikawa H, Hosoyama A, Ichinomiya M, Igarashi R, Iwashita K, Juvvadi PR, Kato M, Kato Y, Kin T, Kokubun A, Maeda H, Maeyama N, Maruyama J, Nagasaki H, Nakajima T, Oda K, Okada K, Paulsen I, Sakamoto K, Sawano T, Takahashi M, Takase K, Terabayashi Y, Wortman JR, Yamada O, Yamagata Y, Anazawa H, Hata Y, Koide Y, Komori T, Koyama Y, Minetoki T, Suharnan S, Tanaka A, Isono K, Kuhara S, Ogasawara N, Kikuchi H (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161. https://doi.org/10.1038/nature04300

    Article  PubMed  Google Scholar 

  96. Machida M, Yamada O, Gomi K (2008) Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA Res 15:173–183. https://doi.org/10.1093/dnares/dsn020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Martuscelli M, Arfelli G, Manetta AC, Suzzi G (2013) Biogenic amines content as a measure of the quality of wines of Abruzzo (Italy). Food Chem 140:590–597. https://doi.org/10.1016/j.foodchem.2013.01.008

    CAS  Article  PubMed  Google Scholar 

  98. Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y (2011) Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE 6:e23652. https://doi.org/10.1371/journal.pone.0023652

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233. https://doi.org/10.1038/srep00233

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Matzeu A, Martin-Fardon R (2018) Drug seeking and relapse: new evidence of a role for orexin and dynorphin co-transmission in the paraventricular nucleus of the thalamus. Front Neurol 9:720. https://doi.org/10.3389/fneur.2018.00720

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mazure CM (1998) Life stressors as risk factors in depression. Clin Psychol Sci Pract 5:291–313. https://doi.org/10.1111/j.1468-2850.1998.tb00151.x

    Article  Google Scholar 

  102. Michael AJ (2018) Polyamine function in archaea and bacteria. J Biol Chem 293:18693–18701. https://doi.org/10.1074/jbc.TM118.005670

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Minois N, Rockenfeller P, Smith TK, Carmona-Gutierrez D (2014) Spermidine feeding decreases age-related locomotor activity loss and induces changes in lipid composition. PLoS ONE 9:e102435. https://doi.org/10.1371/journal.pone.0102435

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. Molderings GJ, Haenisch B (2012) Agmatine (decarboxylated l-arginine): physiological role and therapeutic potential. Pharmacol Ther 133:351–365. https://doi.org/10.1016/j.pharmthera.2011.12.005

    CAS  Article  PubMed  Google Scholar 

  105. Molderings GJ, Heinen A, Menzel S, Göthert M (2002) Exposure of rat isolated stomach and rats in vivo to [14C] agmatine: accumulation in the stomach wall and distribution in various tissues. Fundam Clin Pharmacol 16:219–225. https://doi.org/10.1046/j.1472-8206.2002.00073.x

    CAS  Article  PubMed  Google Scholar 

  106. Moretti M, Neis VB, Matheus FC, Cunha MP, Rosa PB, Ribeiro CM, Rodrigues AL, Prediger RD (2015) Effects of agmatine on depressive-like behavior induced by intracerebroventricular administration of 1-methyl-4-phenylpyridinium (MPP+). Neurotox Res 28:222–231. https://doi.org/10.1007/s12640-015-9540-1

    CAS  Article  PubMed  Google Scholar 

  107. Morimoto N, Fukuda W, Nakajima N, Masuda T, Terui Y, Kanai T, Oshima T, Imanaka T, Fujiwara S (2010) Dual biosynthesis pathway for longer-chain polyamines in the hyperthermophilic archaeon Thermococcus kodakarensis. J Bacteriol 192:4991–5001. https://doi.org/10.1128/JB.00279-10

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  108. Morris SM Jr (2016) Arginine metabolism revisited. J Nutr 146:2579S–2586S. https://doi.org/10.3945/jn.115.226621

    CAS  Article  PubMed  Google Scholar 

  109. Muoio DM, Koves TR (2007) Skeletal muscle adaptation to fatty acid depends on coordinated actions of the PPARs and PGC1α: implications for metabolic disease. Appl Physiol Nutr Metab 32:874–883. https://doi.org/10.1139/H07-083

    CAS  Article  PubMed  Google Scholar 

  110. Naila A, Flint S, Fletcher G, Bremer P, Meerdink G (2010) Control of biogenic amines in food-existing and emerging approaches. J Food Sci 75:R139–R150. https://doi.org/10.1111/j.1750-3841.2010.01774.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Nishibori N, Fujihara S, Akatuki T (2007) Amounts of polyamines in foods in Japan and intake by Japanese. Food Chem 100:491–497. https://doi.org/10.1016/j.foodchem.2005.09.070

    CAS  Article  Google Scholar 

  112. Nishimura K, Shiina R, Kashiwagi K, Igarashi K (2006) Decrease in polyamines with aging and their ingestion from food and drink. J Biochem 139:81–90. https://doi.org/10.1093/jb/mvj003

    CAS  Article  PubMed  Google Scholar 

  113. Nissim I, Daikhin Y, Nissim I, Luhovyy B, Horyn O, Wehrli SL, Yudkoff M (2006) Agmatine stimulates hepatic fatty acid oxidation: a possible mechanism for up-regulation of ureagenesis. J Biol Chem 281:8486–8496. https://doi.org/10.1074/jbc.M506984200

    CAS  Article  PubMed  Google Scholar 

  114. Nissim I, Horyn O, Daikhin Y, Chen P, Li C, Wehrli SL, Nissim I, Yudkoff M (2014) The molecular and metabolic influence of long term agmatine consumption. J Biol Chem 289:9710–9729. https://doi.org/10.1074/jbc.M113.544726

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Novella-Rodríguez S, Veciana-Nogués MT, Roig-Sagués AX, Trujillo-Mesa AJ, Vidal-Carou MC (2002) Influence of starter and nonstarter on the formation of biogenic amine in goat cheese during ripening. J Dairy Sci 85:2471–2478. https://doi.org/10.3168/jds.S0022-0302(02)74329-4

    Article  PubMed  Google Scholar 

  116. Oguro Y, Nishiwaki T, Shinada R, Kobayashi K, Kurahashi A (2017) Metabolite profile of koji amazake and its lactic acid fermentation product by Lactobacillus sakei UONUMA. J Biosci Bioeng 124:178–183. https://doi.org/10.1016/j.jbiosc.2017.03.011

    CAS  Article  PubMed  Google Scholar 

  117. Okada K, Hidese R, Fukuda W, Niitsu M, Takao K, Horai Y, Umezawa N, Higuchi T, Oshima T, Yoshikawa Y, Imanaka T, Fujiwara S (2014) Identification of a novel aminopropyltransferase involved in the synthesis of branched-chain polyamines in hyperthermophiles. J Bacteriol 196:1866–1876. https://doi.org/10.1128/JB.01515-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Okamoto A, Sugi E, Koizumi Y, Yanagida F, Udaka S (1997) Polyamine content of ordinary foodstuffs and various fermented foods. Biosci Biotechnol Biochem 61:1582–1584. https://doi.org/10.1271/bbb.61.1582

    CAS  Article  PubMed  Google Scholar 

  119. Olmos G, DeGregorio-Rocasolano N, Paz Regalado M, Gasull T, Assumpció Boronat M, Trullas R, Villarroel A, Lerma J, García-Sevilla JA (1999) Protection by imidazol(ine) drugs and agmatine of glutamate-induced neurotoxicity in cultured cerebellar granule cells through blockade of NMDA receptor. Br J Pharmacol 127:1317–1326. https://doi.org/10.1038/sj.bjp.0702679

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Özdestan Ö, Üren A (2010) Biogenic amine content of kefir: a fermented dairy product. Eur Food Res Technol 231:101–107. https://doi.org/10.1007/s00217-010-1258-y

    CAS  Article  Google Scholar 

  121. Pålsson E, Fejgin K, Wass C, Klamer D (2008) Agmatine attenuates the disruptive effects of phencyclidine on prepulse inhibition. Eur J Pharmacol 590:212–216. https://doi.org/10.1016/j.ejphar.2008.06.022

    CAS  Article  PubMed  Google Scholar 

  122. Pegg AE (2006) Regulation of ornithine decarboxylase. J Biol Chem 281:14529–14532. https://doi.org/10.1074/jbc.R500031200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Piletz JE, Halaris A, Ernsberger PR (1994) Psychopharmacology of imidazoline and α2-adrenergic receptors: implications for depression. Crit Rev Neurobiol 9:29–66

    CAS  PubMed  Google Scholar 

  124. Piletz JE, Aricioglu F, Cheng JT, Fairbanks CA, Gilad VH, Haenisch B, Halaris A, Hong S, Lee JE, Li J, Liu P, Molderings GJ, Rodrigues AL, Satriano J, Seong GJ, Wilcox G, Wu N, Gilad GM (2013) Agmatine: clinical applications after 100 years in translation. Drug Discov Today 18:880–893. https://doi.org/10.1016/j.drudis.2013.05.017

    CAS  Article  PubMed  Google Scholar 

  125. Prus AJ, James JR, Rosecrans JA (2009) Conditioned place preference, Chap. 4. In: Buccafusco JJ (ed) Methods of behavior analysis in neuroscience, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  126. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, MetaHIT Consortium, Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. https://doi.org/10.1038/nature08821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  127. Regunathan S, Piletz JE (2003) Regulation of inducible nitric oxide synthase and agmatine synthesis in macrophages and astrocytes. Ann N Y Acad Sci 1009:20–29. https://doi.org/10.1196/annals.1304.002

    CAS  Article  PubMed  Google Scholar 

  128. Reis DJ, Regunathan S (1999) Agmatine: an endogenous ligand at imidazoline receptors is a novel neurotransmitter. Ann N Y Acad Sci 881:65–80. https://doi.org/10.1111/j.1749-6632.1999.tb09343.x

    CAS  Article  PubMed  Google Scholar 

  129. Rushaidhi M, Collie ND, Zhang H, Liu P (2012a) Agmatine selectively improves behavioural function in aged male Sprague-Dawley rats. Neuroscience 218:206–215. https://doi.org/10.1016/j.neuroscience.2012.05.015

    CAS  Article  PubMed  Google Scholar 

  130. Rushaidhi M, Jing Y, Kennard JT, Collie ND, Williams JM, Zhang H, Liu P (2012b) Aging affects l-arginine and its metabolites in memory-associated brain structures at the tissue and synaptoneurosome levels. Neuroscience 209:21–31. https://doi.org/10.1016/j.neuroscience.2012.02.021

    CAS  Article  PubMed  Google Scholar 

  131. Rushaidhi M, Jing Y, Zhang H, Liu P (2013a) Participation of hippocampal agmatine in spatial learning: an in vivo microdialysis study. Neuropharmacology 65:200–205. https://doi.org/10.1016/j.neuropharm.2012.10.007

    CAS  Article  PubMed  Google Scholar 

  132. Rushaidhi M, Zhang H, Liu P (2013b) Effects of prolonged agmatine treatment in aged male Sprague-Dawley rats. Neuroscience 234:116–124. https://doi.org/10.1016/j.neuroscience.2013.01.004

    CAS  Article  PubMed  Google Scholar 

  133. Sameer SM, Chakraborty SS, Ugale RR (2013) Agmatine attenuates acquisition but not the expression of ethanol conditioned place preference in mice: a role for imidazoline receptors. Behav Pharmacol 24:87–94. https://doi.org/10.1097/FBP.0b013e32835efc46

    CAS  Article  PubMed  Google Scholar 

  134. Samková E, Dadáková E, Pelikánová T (2013) Changes in biogenic amine and polyamine contents in smear-ripened cheeses during storage. Eur Food Res Technol 237:309–314. https://doi.org/10.1007/s00217-013-1993-y

    CAS  Article  Google Scholar 

  135. Satriano J (2004) Arginine pathways and the inflammatory response: interregulation of nitric oxide and polyamines: review article. Amino Acids 26:321–329. https://doi.org/10.1007/s00726-004-0078-4

    CAS  Article  PubMed  Google Scholar 

  136. Satriano J, Matsufuji S, Murakami Y, Lortie MJ, Schwartz D, Kelly CJ, Hayashi S, Blantz RC (1998) Agmatine suppresses proliferation by frameshift induction of antizyme and attenuation of cellular polyamine levels. J Biol Chem 273:15313–15316. https://doi.org/10.1074/jbc.273.25.15313

    CAS  Article  PubMed  Google Scholar 

  137. Sawada K, Sato T, Hamajima H, Jayakody LN, Hirata M, Yamashiro M, Tajima M, Mitsutake S, Nagao K, Tsuge K, Abe F, Hanada K, Kitagaki H (2015) Glucosylceramide contained in koji mold-cultured cereal confers membrane and flavor modification and stress tolerance to Saccharomyces cerevisiae during coculture fermentation. Appl Environ Microbiol 81:3688–3698. https://doi.org/10.1128/AEM.00454-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Schirone M, Tofalo R, Fasoli G, Perpetuini G, Corsetti A, Manetta AC, Ciarrocchi A, Suzzi G (2013) High content of biogenic amines in Pecorino cheeses. Food Microbiol 34:137–144. https://doi.org/10.1016/j.fm.2012.11.022

    CAS  Article  PubMed  Google Scholar 

  139. Sener A, Lebrun P, Blachier F, Malaisse WJ (1989) Stimulus-secretion coupling of arginine-induced insulin release. Insulinotropic action of agmatine. Biochem Pharmacol 38:327–330. https://doi.org/10.1016/0006-2952(89)90044-0

    CAS  Article  PubMed  Google Scholar 

  140. Shepherd RM, Hashmi MN, Kane C, Squires PE, Dunne MJ (1996) Elevation of cytosolic calcium by imidazolines in mouse islets of Langerhans: implications for stimulus-response coupling of insulin release. Br J Pharmacol 119:911–916. https://doi.org/10.1111/j.1476-5381.1996.tb15759.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Shopsin B (2013) The clinical antidepressant effect of exogenous agmatine is not reversed by parachlorophenylalanine: a pilot study. Acta Neuropsychiatr 25:113–118. https://doi.org/10.1111/j.1601-5215.2012.00675.x

    Article  PubMed  Google Scholar 

  142. Shukla S, Park HK, Kim JK, Kim M (2011) Determination of biogenic amines in Japanese miso products. Food Sci Biotechnol 20:851–854. https://doi.org/10.1007/s10068-011-0119-1

    CAS  Article  Google Scholar 

  143. Siegan JB, Hama AT, Sagen J (1997) Suppression of neuropathic pain by a naturally-derived peptide with NMDA antagonist activity. Brain Res 755:331–334. https://doi.org/10.1016/S0006-8993(97)00183-2

    CAS  Article  PubMed  Google Scholar 

  144. Silla Santos MH (1996) Biogenic amines: their importance in foods. Int J Food Microbiol 29:213–231. https://doi.org/10.1016/0168-1605(95)00032-1

    CAS  Article  PubMed  Google Scholar 

  145. Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44:727–732. https://doi.org/10.1016/j.exger.2009.08.013

    CAS  Article  PubMed  Google Scholar 

  146. Soufleros EH, Bouloumpasi E, Zotou A, Loukou Z (2007) Determination of biogenic amines in Greek wines by HPLC and ultraviolet detection after dansylation and examination of factors affecting their presence and concentration. Food Chem 101:704–716. https://doi.org/10.1016/j.foodchem.2006.02.028

    CAS  Article  Google Scholar 

  147. Spizzirri UG, Restuccia D, Curcio M, Parisi OI, Iemma F, Picci N (2013) Determination of biogenic amines in different cheese samples by LC with evaporative light scattering detector. J Food Compos Anal 29:43–51. https://doi.org/10.1016/j.jfca.2012.09.005

    CAS  Article  Google Scholar 

  148. Su RB, Lu XQ, Huang Y, Liu Y, Gong ZH, Wei XL, Wu N, Li J (2008) Effects of intragastric agmatine on morphine-induced physiological dependence in beagle dogs and rhesus monkeys. Eur J Pharmacol 587:155–162. https://doi.org/10.1016/j.ejphar.2008.03.022

    CAS  Article  PubMed  Google Scholar 

  149. Su CH, Liu IM, Chung HH, Cheng JT (2009) Activation of I2-imidazoline receptors by agmatine improved insulin sensitivity through two mechanisms in type-2 diabetic rats. Neurosci Lett 457:125–128. https://doi.org/10.1016/j.neulet.2009.03.093

    CAS  Article  PubMed  Google Scholar 

  150. Tabor CW, Tabor H (1984) Polyamines. Annu Rev Biochem 53:749–790. https://doi.org/10.1146/annurev.bi.53.070184.003533

    CAS  Article  PubMed  Google Scholar 

  151. Taksande BG, Kotagale NR, Patel MR, Shelkar GP, Ugale RR, Chopde CT (2010) Agmatine, an endogenous imidazoline receptor ligand modulates ethanol anxiolysis and withdrawal anxiety in rats. Eur J Pharmacol 637:89–101. https://doi.org/10.1016/j.ejphar.2010.03.058

    CAS  Article  PubMed  Google Scholar 

  152. Tang T, Shi T, Qian K, Li P, Li J, Cao Y (2009) Determination of biogenic amines in beer with pre-column derivatization by high performance liquid chromatography. J Chromatogr B 877:507–512. https://doi.org/10.1016/j.jchromb.2008.12.064

    CAS  Article  Google Scholar 

  153. Taylor SL (1986) Histamine food poisoning: toxicology and clinical aspects. Crit Rev Toxicol 17:91–128. https://doi.org/10.3109/10408448609023767

    CAS  Article  PubMed  Google Scholar 

  154. Terui Y, Ohnuma M, Hiraga K, Kawashima E, Oshima T (2005) Stabilization of nucleic acids by unusual polyamines produced by an extreme thermophile, Thermus thermophilus. Biochem J 388:427–433. https://doi.org/10.1042/BJ20041778

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Uzbay IT (2012) The pharmacological importance of agmatine in the brain. Neurosci Biobehav Rev 36:502–519. https://doi.org/10.1016/j.neubiorev.2011.08.006

    CAS  Article  PubMed  Google Scholar 

  156. Uzbay IT, Yeşilyurt O, Celik T, Ergün H, Işimer A (2000) Effects of agmatine on ethanol withdrawal syndrome in rats. Behav Brain Res 107:153–159. https://doi.org/10.1016/S0166-4328(99)00127-8

    CAS  Article  PubMed  Google Scholar 

  157. Uzbay IT, Kayir H, Goktalay G, Yildirim M (2010) Agmatine disrupts prepulse inhibition of acoustic startle reflex in rats. J Psychopharmacol 24:923–929. https://doi.org/10.1177/0269881109102533

    CAS  Article  PubMed  Google Scholar 

  158. Valdés-Santiago L, Ruiz-Herrera J (2014) Stress and polyamine metabolism in fungi. Front Chem 1:42. https://doi.org/10.3389/fchem.2013.00042

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Vale S, Glória MB (1998) Biogenic amines in Brazilian cheeses. Food Chem 63:343–348. https://doi.org/10.1016/S0308-8146(98)00019-3

    CAS  Article  Google Scholar 

  160. Velasco M, Díaz-García CM, Larqué C, Hiriart M (2016) Modulation of ionic channels and insulin secretion by drugs and hormones in pancreatic beta cells. Mol Pharmacol 90:341–357. https://doi.org/10.1124/mol.116.103861

    CAS  Article  PubMed  Google Scholar 

  161. Wu N, Su RB, Li J (2008) Agmatine and imidazoline receptors: their role in opioid analgesia, tolerance and dependence. Cell Mol Neurobiol 28:629–641. https://doi.org/10.1007/s10571-007-9164-y

    CAS  Article  PubMed  Google Scholar 

  162. Yamamoto K, Shuang E, Hatakeyama Y, Sakamoto Y, Honma T, Jibu Y, Kawakami Y, Tsuduki T (2016) The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice. Nutrition 32:122–128. https://doi.org/10.1016/j.nut.2015.07.002

    CAS  Article  PubMed  Google Scholar 

  163. Yang Y, Iwamoto A, Kumrungsee T, Okazaki Y, Kuroda M, Yamaguchi S, Kato N (2017) Consumption of an acid protease derived from Aspergillus oryzae causes bifidogenic effect in rats. Nutr Res 44:60–66. https://doi.org/10.1016/j.nutres.2017.06.004

    CAS  Article  PubMed  Google Scholar 

  164. Yeşilyurt O, Uzbay IT (2001) Agmatine potentiates the analgesic effect of morphine by an α2-adrenoceptor-mediated mechanism in mice. Neuropsychopharmacology 25:98–103. https://doi.org/10.1016/S0893-133X(00)00245-1

    Article  PubMed  Google Scholar 

  165. Yoon YW, Sung B, Chung JM (1998) Nitric oxide mediates behavioral signs of neuropathic pain in an experimental rat model. NeuroReport 9:367–372. https://doi.org/10.1097/00001756-199802160-00002

    CAS  Article  PubMed  Google Scholar 

  166. Zeidan MP, Zomkowski AD, Rosa AO, Rodrigues AL, Gabilan NH (2007) Evidence for imidazoline receptors involvement in the agmatine antidepressant-like effect in the forced swimming test. Eur J Pharmacol 565:125–131. https://doi.org/10.1016/j.ejphar.2007.03.027

    CAS  Article  PubMed  Google Scholar 

  167. Zhu MY, Piletz JE, Halaris A, Regunathan S (2003) Effect of agmatine against cell death induced by NMDA and glutamate in neurons and PC12 cells. Cell Mol Neurobiol 23:865–872. https://doi.org/10.1023/A:1025069407173

    CAS  Article  PubMed  Google Scholar 

  168. Zhu MY, Iyo A, Piletz JE, Regunathan S (2004) Expression of human arginine decarboxylase, the biosynthetic enzyme for agmatine. Biochim Biophys Acta 1670:156–164. https://doi.org/10.1016/j.bbagen.2003.11.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos AR, Rodrigues AL (2002) Agmatine produces antidepressant-like effects in two models of depression in mice. NeuroReport 13:387–391. https://doi.org/10.1097/00001756-200203250-00005

    CAS  Article  PubMed  Google Scholar 

  170. Zomkowski AD, Oscar Rosa A, Lin J, Santos AR, Calixto JB, Lúcia Severo Rodrigues A (2004) Evidence for serotonin receptor subtypes involvement in agmatine antidepressant like-effect in the mouse forced swimming test. Brain Res 1023:253–263. https://doi.org/10.1016/j.brainres.2004.07.041

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant for Individual Special Research, provided by Kwansei-Gakuin University. Part of this work was funded by the Core to Core Program, which was supported by the Japan Society for the Promotion of Science (JSPS) and the National Research Council of Thailand (NRCT).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Fujiwara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: E. Agostinelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akasaka, N., Fujiwara, S. The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids 52, 181–197 (2020). https://doi.org/10.1007/s00726-019-02720-7

Download citation

Keywords

  • Agmatine
  • Polyamines
  • Quality of life
  • Fermented foods
  • Aspergillus oryzae