Skip to main content
Log in

Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Carnosine (b-alanyl-l-histidine) is an endogenous dipeptide widely distributed in excitable tissues, such as muscle and neural tissues—though in minor concentrations in the latter. Multiple benefits have been attributed to carnosine: direct and indirect antioxidant effect, antiglycating, metal-chelating, chaperone and pH-buffering activity. Thus, carnosine turns out to be a multipotent protector against oxidative damage. However, the role of carnosine in the brain remains unclear. The key aspects concerning carnosine in the brain reviewed are as follows: its concentration and bioavailability, mechanisms of action in neuronal and glial cells, beneficial effects in human studies. Recent literature data and the results of our own research are summarized here. This review covers studies of carnosine effects on both in vitro and in vivo models of cerebral damage, such as neurodegenerative disorders and ischemic injuries and the data on its physiological actions on neuronal signaling and cerebral functions. Besides its antioxidant and homeostatic properties, new potential roles of carnosine in the brain are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afshin-Majd S, Khalili M, Roghani M, Mehranmehr N, Baluchnejadmojarad T (2015) Carnosine exerts neuroprotective effect against 6-hydroxydopamine toxicity in hemiparkinsonian rat. Mol Neurobiol 51:1064–1070

    Article  CAS  PubMed  Google Scholar 

  • Aksu I, Topcu A, Camsari UM, Acikgoz O (2009) Effect of acute and chronic exercise on oxidant-antioxidant equilibrium in rat hippocampus, prefrontal cortex and striatum. Neurosci Lett 452:281–285

    Article  CAS  PubMed  Google Scholar 

  • Aloisi A, Barca A, Romano A, Guerrieri S, Storelli C, Rinaldi R, Verri T (2013) Anti-aggregating effect of the naturally occurring dipeptide carnosine on a beta 1-42 fibril formation. Plos One 8:e68519. https://doi.org/10.1371/journal.pone.0068159

    Article  CAS  Google Scholar 

  • Bae ON, Majid A (2013) Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage. Brain Res 1527:246–254

    Article  CAS  PubMed  Google Scholar 

  • Bae ON et al (2013) Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 44:205–212

    Article  CAS  PubMed  Google Scholar 

  • Bakardjiev A (1998) Carnosine and beta-alanine release is stimulated by glutamatergic receptors in cultured rat oligodendrocytes. Glia 24:346–351

    Article  CAS  PubMed  Google Scholar 

  • Baraniuk JN, El-Amin S, Corey R, Rayhan R, Timbol C (2013) Carnosine treatment for gulf war illness: a randomized controlled trial. Glob J Health Sci 5:69–81

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer K, Salnikow J, de Vitry F, Tixier-Vidal A, Kleinkauf H (1979) Characterization and biosynthesis of omega-aminoacyl amino acids from rat brain and the C-6 glioma cell line. J Biol Chem 254:6402–6407

    CAS  PubMed  Google Scholar 

  • Bauer K, Hallermayer K, Salnikow J, Kleinkauf H, Hamprecht B (1982) Biosynthesis of carnosine and related peptides by glial cells in primary culture. J Biol Chem 257:3593–3597

    CAS  PubMed  Google Scholar 

  • Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E (2011) Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med 32:258–266

    Article  CAS  PubMed  Google Scholar 

  • Berezhnoy DS, Bokieva SB, Stvolinskii SL, Fedorova TN, Inozemtsev AN (2015) Effect of carnosine on conditioned passive avoidance response in the norm and under hypoxia conditions. Mosc Univ Biol Sci Bull 70:105–109 (article in Russian)

    Article  Google Scholar 

  • Berezhnoy DS, Fedorova TN, Stvolinskii SL, Inozemtsev AN (2016) Carnosine modulates oxidative homeostasis and levels of neurotransmitters in the brain in models of learning with positive and negative reinforcement. Neurochem J 10:273–279

    Article  CAS  Google Scholar 

  • Biffo S, Grillo M, Margolis FL (1990) Cellular localization of carnosine-like and anserine-like immunoreactivities in rodent and avian central nervous system. Neuroscience 35:637–651

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA (2012) Carnosine: new concept for the function of an old molecule. Biochemistry 77:313–326 (Mosc)

    CAS  PubMed  Google Scholar 

  • Boldyrev AA, Severin SE (1990) The histidine-containing dipeptides, carnosine and anserine: distribution, properties and biological significance. Adv Enzyme Regul 30:175–194

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Dupin AM, Pindel EV, Severin SE (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp Biochem Physiol B 89:245–250

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Stvolinsky SL, Tyulina OV, Koshelev VB, Hori N, Carpenter DO (1997) Biochemical and physiological evidence that carnosine is an endogenous neuroprotector against free radicals. Cell Mol Neurobiol 17:259–271

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Yuneva MO, Sorokina EV, Kramarenko GG, Fedorova TN, Konovalova GG, Lankin VZ (2001) Antioxidant systems in tissues of senescence accelerated mice. Biochemistry 66:1157–1163 (Mosc)

    CAS  PubMed  Google Scholar 

  • Boldyrev A, Bulygina E, Leinsoo T, Petrushanko I, Tsubone S, Abe H (2004) Protection of neuronal cells against reactive oxygen species by carnosine and related compounds. Comp Biochem Physiol B Biochem Mol Biol 137:81–88

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Stvolinskii SL, Fedorova TN (2007) Carnosine: endogenous physiological corrector of antioxidative system activity. Usp Fiziol Nauk 38:57–71

    CAS  PubMed  Google Scholar 

  • Boldyrev A et al (2008) Carnosine [corrected] increases efficiency of DOPA therapy of Parkinson’s disease: a pilot study. Rejuvenation Res 11:821–827

    Article  CAS  PubMed  Google Scholar 

  • Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845

    Article  CAS  PubMed  Google Scholar 

  • Bonfanti L, Peretto P, De Marchis S, Fasolo A (1999) Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 59:333–353

    Article  CAS  PubMed  Google Scholar 

  • Calabrese V et al (2005) Protective effect of carnosine during nitrosative stress in astroglial cell cultures. Neurochem Res 30:797–807

    Article  CAS  PubMed  Google Scholar 

  • Cantuti-Castelvetri I, Shukitt-Hale B, Joseph JA (2000) Neurobehavioral aspects of antioxidants in aging. Int J Dev Neurosci 18:367–381

    Article  CAS  PubMed  Google Scholar 

  • Chance WT, White AC, Krynock GM, Rosecrans JA (1979) Autoanalgesia: acquisition, blockade and relationship to opiate binding. Eur J Pharmacol 58:461–468

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Wang F, Yu DF, Wu PF, Chen JG (2011) The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reactive oxygen species/MAPK pathway in neurons. Eur J Pharmacol 650:184–194

    Article  CAS  PubMed  Google Scholar 

  • Chengappa KN et al (2012) A preliminary, randomized, double-blind, placebo-controlled trial of l-carnosine to improve cognition in schizophrenia. Schizophr Res 142:145–152

    Article  PubMed  Google Scholar 

  • Chez MG, Buchanan CP, Aimonovitch MC, Becker M, Schaefer K, Black C, Komen J (2002) Double-blind, placebo-controlled study of l-carnosine supplementation in children with autistic spectrum disorders. J Child Neurol 17:833–837. https://doi.org/10.1177/08830738020170111501

    Article  PubMed  Google Scholar 

  • Chung CP, Schmidt D, Stein CM, Morrow JD, Salomon RM (2013) Increased oxidative stress in patients with depression and its relationship to treatment. Psychiatry Res 206:213–216. https://doi.org/10.1016/j.psychres.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  • Corona C et al (2011) Effects of dietary supplementation of carnosine on mitochondrial dysfunction, amyloid pathology, and cognitive deficits in 3xTg-AD mice. Plos One 6:e17971. https://doi.org/10.1371/journal.pone.0017971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CK, Laud PJ, Bahor Z, Rajanikant GK, Majid A (2016) Systematic review and stratified meta-analysis of the efficacy of carnosine in animal models of ischemic stroke. J Cerebr Blood F Met 36:1686–1694. https://doi.org/10.1177/0271678X16658302

    Article  CAS  Google Scholar 

  • De Marchis S, Melcangi RC, Modena C, Cavaretta I, Peretto P, Agresti C, Fasolo A (1997) Identification of the glial cell types containing carnosine-related peptides in the rat brain. Neurosci Lett 237:37–40

    Article  PubMed  Google Scholar 

  • De Marchis S, Modena C, Peretto P, Migheli A, Margolis FL, Fasolo A (2000) Carnosine-related dipeptides in neurons and glia. Biochemistry 65:824–833 (Mosc)

    PubMed  Google Scholar 

  • Derave W (2011) Sale C (2012) Carnosine in exercise and disease: introduction to the International Congress held at Ghent University, Belgium. Amino Acids 43:1–4. https://doi.org/10.1007/s00726-012-1281-3

    Article  CAS  Google Scholar 

  • Deviatov AA, Fedorova TN, Stvolinskii SL, Tutelyan VA (2017) Assessment of oxidative status of the brain and blood plasma in rats with modeled focal cerebral ischemia/reperfusion injury. B Exp Biol Med 163:156–159 (article in Russian)

    Google Scholar 

  • Di Paola R et al (2011) Administration of carnosine in the treatment of acute spinal cord injury. Biochem Pharmacol 82:1478–1489 (article in Russian)

    Article  CAS  PubMed  Google Scholar 

  • Fedorova TN, Macletsova MG, Kulikov AV, Stepanova MS, Boldyrev AA (2006) Carnosine protects from the oxidative stress induced by prenatal hypoxia. Dokl Biol Sci 408:207–210

    Article  CAS  PubMed  Google Scholar 

  • Fedorova TN, Belyaev MS, Trunova OA, Gnezditsky VV, Maximova MY, Boldyrev AA (2009) Neuropeptide carnosine increases stability of lipoproteins and red blood cells as well as efficiency of immune competent system in patients with chronic discirculatory encephalopathy. Biochemistry Suppl Ser A 3:62–65

    Article  Google Scholar 

  • Fedorova TN, Stvolinsky SL, Kulikova OI, Konovalova EV, Levacheva IS, Samsonova O, Bakovski U (2016a) Effectivity of nanoliposomal compositions and S-trolox-carnosine neuroprotective action in the models of oxidative stress in vitro and in vivo. Ann Neurol 1:47–52 (article in Russian)

    Google Scholar 

  • Fedorova TN, Kulikova OI, Stvolinsky SL, Orlova VS (2016b) Neuroprotective action of S-Trolox-carnosine in the SH-SY5Y human neuroblastoma cell culture under the conditions of heavy-metal. Neurochemistry 33:1–7 (article in Russian)

    Google Scholar 

  • Fedorova T, Gavrilova SA, Morozova MP, Deviatov AA, Berezhnoy DS, Stvolinskii SL (2017) Neuroprotective action of carnosine in focal brain ischemia conditions. Voposy Biologicheskoi, Medicinskoi I Farmacevticheskoi 20:25–31

    Google Scholar 

  • Feng ZY, Zheng XJ, Wang J (2009) Effects of carnosine on the evoked potentials in hippocampal CA1 region. J Zhejiang Univ Sci B 10:505–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flancbaum L, Fitzpatrick JC, Brotman DN, Marcoux AM, Kasziba E, Fisher H (1990) The presence and significance of carnosine in histamine-containing tissues of several mammalian species. Agents Actions 31:190–196

    Article  CAS  PubMed  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (2004) Mitochondria: are they the seat of senescence? Aging Cell 3:13–16

    Article  CAS  PubMed  Google Scholar 

  • Frosch MP, Dichter MA (1984) Physiology and pharmacology of olfactory bulb neurons in dissociated cell culture. Brain Res 290:321–332

    Article  CAS  PubMed  Google Scholar 

  • Gallant S, Kukley M, Stvolinsky S, Bulygina E, Boldyrev A (2000) Effect of carnosine on rats under experimental brain ischemia. Tohoku J Exp Med 191:85–99

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Estrada MT, Freeman WJ (1980) Effects of carnosine on olfactory bulb EEG, evoked potentials and DC potentials. Brain Res 202:373–386

    Article  CAS  PubMed  Google Scholar 

  • Gulewitch WS, Amiradzibi S (1900) Uber das carnosin, eine neue organische Base des Fleischextraktes. Ber Deutsch Chem Ges B33:S1902–S1903

    Article  Google Scholar 

  • Guliaeva NV, Obidin AB, Levshina IP, Filonenko AV, Dupin AM, Boldyrev AA (1989) The effect of carnosine on indicators of free radical lipid oxidation during acute stress in rats. Nauchnye Doki Vyss Shkoly Biol Nauki 8:5–16 (article in Russian)

    Google Scholar 

  • Guo Y, Li P, Guo Q, Shang K, Yan D, Du S, Lu Y (2013) Pathophysiology and biomarkers in acute ischemic stroke—a review. Trop J Pharm Res 12:1097–1105

    Article  CAS  Google Scholar 

  • Hawkins RA, O’Kane RL, Simpson IA, Vina JR (2006) Structure of the blood-brain barrier and its role in the transport of amino acids. J Nutr 136:218S–226S

    Article  CAS  PubMed  Google Scholar 

  • Herculano B, Tamura M, Ohba A, Shimatani M, Kutsuna N, Hisatsune T (2013) Beta-alanyl-l-histidine rescues cognitive deficits caused by feeding a high fat diet in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis 33:983–997

    Article  CAS  PubMed  Google Scholar 

  • Hipkiss AR, Preston JE, Himswoth DT, Worthington VC, Abbot NJ (1997) Protective effects of carnosine against malondialdehyde-induced toxicity towards cultured rat brain endothelial cells. Neurosci Lett 238:135–138

    Article  CAS  PubMed  Google Scholar 

  • Hisatsune T et al (2016) Effect of anserine/carnosine supplementation on verbal episodic memory in elderly people. J Alzheimers Dis 50:149–159

    Article  CAS  PubMed  Google Scholar 

  • Hobart LJ, Seibel I, Yeargans GS, Seidler NW (2004) Anti-crosslinking properties of carnosine: significance of histidine. Life Sci 75:1379–1389

    Article  CAS  PubMed  Google Scholar 

  • Hobson RM, Saunders B, Ball G, Harris RC, Sale C (2012) Effects of beta-alanine supplementation on exercise performance: a meta-analysis. Amino Acids 43:25–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AM, Bakardjiev A, Bauer K (1996) Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes. Neurosci Lett 215:29–32

    Article  CAS  PubMed  Google Scholar 

  • Holliday R, McFarland GA (2000) A role for carnosine in cellular maintenance. Biochemistry 65:843–848

    CAS  PubMed  Google Scholar 

  • Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245

    Article  PubMed  Google Scholar 

  • Ivanisevic J et al (2015) Arteriovenous blood metabolomics: a readout of intra-tissue metabostasis. Sci Rep 5:12757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin CL et al (2005) Effects of carnosine on amygdaloid-kindled seizures in Sprague-Dawley rats. Neuroscience 135:939–947

    Article  CAS  PubMed  Google Scholar 

  • Kanaki K, Kawashima S, Kashiwayanagi M, Kurihara K (1997) Carnosine-induced inward currents in rat olfactory bulb neurons in cultured slices. Neurosci Lett 231:167–170

    Article  CAS  PubMed  Google Scholar 

  • Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci USA 85:3175–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozan R, Sefil F, Bagirici F (2008) Anticonvulsant effect of carnosine on penicillin-induced epileptiform activity in rats. Brain Res 1239:249–255

    Article  CAS  PubMed  Google Scholar 

  • Kulebyakin K, Karpova L, Lakonsteva E, Krasavin M, Boldyrev A (2012) Carnosine protects neurons against oxidative stress and modulates the time profile of MAPK cascade signaling. Amino Acids 43:91–96

    Article  CAS  PubMed  Google Scholar 

  • Kulikova OI, Fedorova TN, Stvolinsky SL, Orlova VS (2016) Neuroprotective effect of new carnosine-derived nanostructural complexes in experimental models of Parkinson’s disease. Eurasian Union Sci 25:116–120

    Google Scholar 

  • Kurella EG, Tyulina OV, Boldyrev AA (1999) Oxidative resistance of Na/K-ATPase. Cell Mol Neurobiol 19:133–140

    Article  CAS  PubMed  Google Scholar 

  • Lieblein-Boff JC, Johnson EJ, Kennedy AD, Lai CS, Kuchan MJ (2015) Exploratory metabolomic analyses reveal compounds correlated with lutein concentration in frontal cortex, hippocampus, and occipital cortex of human infant brain. Plos One 10:e0136904. https://doi.org/10.1371/journal.pone.0136904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Gao HM, Hong JS (2003) Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 111:1065–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopachev AV, Lopacheva OM, Abaimov DA, Koroleva OV, Vladychenskaya EA, Erukhimovich AA, Fedorova TN (2016) Neuroprotective effect of carnosine on primary culture of rat cerebellar cells under oxidative stress. Biochemistry 81:511–520

    CAS  PubMed  Google Scholar 

  • Lopachev AV, Lopacheva OM, Akkuratov EE, Stvolinskii SL, Fedorova TN (2017) Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity. Neurochem J 11:38–42

    Article  CAS  Google Scholar 

  • Lotharius J, O’Malley KL (2000) The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 275:38581–38588

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Bo SH, Lu XT, Xu AJ, Zhang J (2016) Protective effects of carnosine on white matter damage induced by chronic cerebral hypoperfusion. Neural Regen Res 11:1438–1444

    PubMed  PubMed Central  Google Scholar 

  • MacLeod NK, Straughan DW (1979) Responses of olfactory bulb neurones to the dipeptide carnosine. Exp Brain Res 34:183–188

    Article  CAS  PubMed  Google Scholar 

  • Marchette LD, Wang H, Li F, Babizhayev MA, Kasus-Jacobi A (2012) Carcinine has 4-hydroxynonenal scavenging property and neuroprotective effect in mouse retina. Invest Ophthalmol Vis Sci 53:3572–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margolis FL (1974) Carnosine in the primary olfactory pathway Science 184:909–911

    CAS  PubMed  Google Scholar 

  • Margolis FL, Grillo M (1977) Axoplasmic transport of carnosine (beta-alanyl-l-histidine) in the mouse olfactory pathway. Neurochem Res 2:507–519

    Article  CAS  PubMed  Google Scholar 

  • Mark LP et al (2001) Pictorial review of glutamate excitotoxicity: fundamental concepts for neuroimaging. AJNR Am J Neuroradiol 22:1813–1824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrazad-Saber Z, Kheirouri S, Noorazar SG (2018) Effects of l-carnosine supplementation on sleep disorders and disease severity in autistic children: a randomized, controlled clinical trial. Basic Clin Pharmacol Toxicol 123:72–77

    Article  CAS  PubMed  Google Scholar 

  • Min J et al (2008) Differential neuroprotective effects of carnosine, anserine, and N-acetyl carnosine against permanent focal ischemia. J Neurosci Res 86:2984–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ming X, Stein TP, Barnes V, Rhodes N, Guo L (2012) Metabolic perturbance in autism spectrum disorders: a metabolomics study. J Proteome Res 11:5856–5862

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Suda T (1986a) Antineoplastic effects of carnosine and beta-alanine–physiological considerations of its antineoplastic effects. Nihon Seirigaku Zasshi 48:741–747

    CAS  PubMed  Google Scholar 

  • Nagai K, Suda T (1986b) Immunoregulative effects of carnosine and beta-alanine. Nihon Seirigaku Zasshi 48:564–571

    CAS  PubMed  Google Scholar 

  • Nagai K, Suda T, Kawasaki K, Yamaguchi Y (1990) Acceleration of metabolism of stress-related substances by l-carnosine. Nihon Seirigaku Zasshi 52:221–228

    CAS  PubMed  Google Scholar 

  • Nagai K et al (2003) Possible role of L-carnosine in the regulation of blood glucose through controlling autonomic nerves. Exp Biol Med (Maywood) 228:1138–1145

    Article  CAS  Google Scholar 

  • Nagai K et al (2012) Role of l-carnosine in the control of blood glucose, blood pressure, thermogenesis, and lipolysis by autonomic nerves in rats: involvement of the circadian clock and histamine. Amino Acids 43:97–109

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti VG et al (2007) Carnosine interaction with nitric oxide and astroglial cell protection. J Neurosci Res 85:2239–2245

    Article  CAS  PubMed  Google Scholar 

  • Nicoll RA, Alger BE, Jahr CE (1980) Peptides as putative excitatory neurotransmitters: carnosine, enkephalin, substance P and TRH. Proc R Soc Lond B Biol Sci 210:133–149

    Article  CAS  PubMed  Google Scholar 

  • Niijima A, Okui T, Matsumura Y, Yamano T, Tsuruoka N, Kiso Y, Nagai K (2002) Effects of L-carnosine on renal sympathetic nerve activity and DOCA-salt hypertension in rats. Auton Neurosci 97:99–102

    Article  CAS  PubMed  Google Scholar 

  • Nilova TN, Polezhaeva LN (1994) Lipid peroxidation in the brain slices from olfactory cortex of rats after long-term potentiation. IMSechenov Physiol J 80:43–47 (article in Russian)

    CAS  Google Scholar 

  • O’Dowd JJ, Cairns MT, Trainor M, Robins DJ, Miller DJ (1990) Analysis of carnosine, homocarnosine, and other histidyl derivatives in rat brain. J Neurochem 55:446–452

    Article  PubMed  Google Scholar 

  • Oh YM et al (2009) Inhibition of 6-hydroxydopamine-induced endoplasmic reticulum stress by l-carnosine in SH-SY5Y cells. Neurosci Lett 459:7–10

    Article  CAS  PubMed  Google Scholar 

  • Osborne NN, Wu PH, Neuhoff V (1974) Free amino acids and related compounds in the dorsal root ganglia and spinal cord of the rat as determined by the micro dansylation procedure. Brain Res 74:175–181

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L et al (2016) Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to OGD/recovery. Brain Res Bull 124:76–84

    Article  CAS  PubMed  Google Scholar 

  • Panzanelli P, Cantino D, Sassoe-Pognetto M (1997) Co-localization of carnosine and glutamate in photoreceptors and bipolar cells of the frog retina. Brain Res 758:143–152

    Article  CAS  PubMed  Google Scholar 

  • Park HS, Han KH, Shin JA, Park JH, Song KY, Kim DH (2014) The neuroprotective effects of carnosine in early stage of focal ischemia rodent model. J Korean Neurosurg Soc 55:125–130

    Article  PubMed  PubMed Central  Google Scholar 

  • Pekcetin C et al (2009) Carnosine attenuates oxidative stress and apoptosis in transient cerebral ischemia in rats. Acta Biol Hung 60:137–148

    Article  CAS  PubMed  Google Scholar 

  • Petroff OA, Mattson RH, Behar KL, Hyder F, Rothman DL (1998) Vigabatrin increases human brain homocarnosine and improves seizure control. Ann Neurol 44:948–952. https://doi.org/10.1002/ana.410440614

    Article  CAS  PubMed  Google Scholar 

  • Pisano JJ, Wilson JD, Cohen L, Abraham D, Udenfriend S (1961) Isolation of gamma-aminobutyrylhistidine (homocarnosine) from brain. J Biol Chem 236:499–502

    CAS  PubMed  Google Scholar 

  • Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM (2013) ROS and brain diseases: the good, the bad, and the ugly. Oxid Med Cell Longev 2013:963520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pubill D, Verdaguer E, Sureda FX, Camins A, Pallas M, Camarasa J, Escubedo E (2002) Carnosine prevents methamphetamine-induced gliosis but not dopamine terminal loss in rats. Eur J Pharmacol 448:165–168

    Article  CAS  PubMed  Google Scholar 

  • Rajanikant GK, Zemke D, Kassab M, Majid A (2007a) The therapeutic potential of statins in neurological disorders. Curr Med Chem 14:103–112

    Article  CAS  PubMed  Google Scholar 

  • Rajanikant GK, Zemke D, Senut MC, Frenkel MB, Chen AF, Gupta R, Majid A (2007b) Carnosine is neuroprotective against permanent focal cerebral ischemia in mice. Stroke 38:3023–3031

    Article  CAS  PubMed  Google Scholar 

  • Rokicki J, Li L, Imabayashi E, Kaneko J, Hisatsune T, Matsuda H (2015) Daily carnosine and anserine supplementation alters verbal episodic memory and resting state network connectivity in healthy elderly adults. Front Aging Neurosci 7:219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sariev AK et al (2015) Experimental study of the basic pharmacokinetic characteristics of dipeptide carnosine and its efficiency of penetration into brain tissues. Eksp Klin Farmakol 78:30–35

    CAS  PubMed  Google Scholar 

  • Sassoe-Pognetto M et al (1993) Presynaptic co-localization of carnosine and glutamate in olfactory neurones. NeuroReport 5:7–10

    Article  CAS  PubMed  Google Scholar 

  • Severin SE, Kirzon MV, Kaftanova TM (1953) Effect of carnosine and anserine on action of isolated frog muscles. Dokl Akad Nauk SSSR 91:691–694 (article in Russian)

    CAS  PubMed  Google Scholar 

  • Shen Y et al (2010) Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic Biol Med 48:727–735

    Article  CAS  PubMed  Google Scholar 

  • Shi X et al (2017) Carnosine modulates glutamine synthetase expression in senescent astrocytes exposed to oxygen-glucose deprivation/recovery. Brain Res Bull 130:138–145

    Article  CAS  PubMed  Google Scholar 

  • Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci 2011:572634

    PubMed  PubMed Central  Google Scholar 

  • Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ros activate mapk pathways? J Signal Transduct 2011:792639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorokina EV, Bastrikova NA, Stvolinskii SL, Fedorova TN (2003) Carnosine and selegelin effects in MPTP-induced parkinsonism. Neurochemistry 20:133–138

    CAS  Google Scholar 

  • Spina-Purrello V, Giliberto S, Barresi V, Nicoletti VG, Giuffrida Stella AM, Rizzarelli E (2010) Modulation of PARP-1 and PARP-2 expression by l-carnosine and trehalose after LPS and INFgamma-induced oxidative stress. Neurochem Res 35:2144–2153

    Article  CAS  PubMed  Google Scholar 

  • Stvolinsky SL, Dobrota D (2000) Anti-ischemic activity of carnosine. Biochemistry 65:849–855

    CAS  PubMed  Google Scholar 

  • Stvolinsky S, Toropova K, Gordeeva M, Kazey V, Sato T, Meguro K, Boldyrev A (2012) Carnosine and its (S)-trolox derivative protect animals against oxidative stress. Amino Acids 43:165–170

    Article  CAS  PubMed  Google Scholar 

  • Stvolinsky SL, Fedorova TN, Berezhnoy DS, Logvinenko AA, Muzychuk OA, Inozemtsev AA (2014) Carnosine (beta-alanyl-l-histidine) increases the efficacy of learning under conditions of oxidative stress related to the development of conditioned response with negative reinforcement. Neurochem J 8:295–300

    Article  CAS  Google Scholar 

  • Stvolinsky SL, Fedorova TN, Devyatov AA, Medvedev OS, Belousova MA, Ryzhkov IN, Tutelyan VA (2017) A neuroprotective action of carnosine in conditions of experimental focal cerebral ischemia-reperfusion. Zh Nevrol Psikhiatr Im S S Korsakova 117:60–64

    Article  CAS  PubMed  Google Scholar 

  • Suer C, Dolu N, Artis S, Aydogan S (2009) Effects of carnosine on long-term plasticity of medial perforant pathway/dentate gyrus synapses in urethane-anesthetized rats: an in vivo model. Exp Brain Res 197:135–142

    Article  CAS  PubMed  Google Scholar 

  • Suslina ZA, Maksimova MY, Fedorova TN (2007) Oxidative stress and main directions of neuroprotection in cerebral ischemia. Neurol J 12:3–7

    Google Scholar 

  • Tanida M et al (2005) Dose-dependent effects of L-carnosine on the renal sympathetic nerve and blood pressure in urethane-anesthetized rats. Am J Physiol Regul Integr Comp Physiol 288:R447–R455

    Article  CAS  PubMed  Google Scholar 

  • Tanida M et al (2007) Effects of central injection of L-carnosine on sympathetic nerve activity innervating brown adipose tissue and body temperature in rats. Regul Pept 144:62–71

    Article  CAS  PubMed  Google Scholar 

  • Tomonaga S, Tachibana T, Takagi T, Saito ES, Zhang R, Denbow DM, Furuse M (2004) Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res Bull 63:75–82

    Article  CAS  PubMed  Google Scholar 

  • Tomonaga S, Tachibana T, Takahashi H, Sato M, Denbow DM, Furuse M (2005) Nitric oxide involves in carnosine-induced hyperactivity in chicks. Eur J Pharmacol 524:84–88

    Article  CAS  PubMed  Google Scholar 

  • Tomonaga S et al (2008) Carnosine-induced antidepressant-like activity in rats. Pharmacol Biochem Behav 89:627–632

    Article  CAS  PubMed  Google Scholar 

  • Tsai SJ, Kuo WW, Liu WH, Yin MC (2010) Antioxidative and anti-inflammatory protection from carnosine in the striatum of MPTP-treated mice. J Agric Food Chem 58:11510–11516

    Article  CAS  PubMed  Google Scholar 

  • Tsoi B et al (2011) Carnosine ameliorates stress-induced glucose metabolism disorder in restrained mice. J Pharmacol Sci 117:223–229

    Article  CAS  PubMed  Google Scholar 

  • Tsuneyoshi Y, Yamane H, Tomonaga S, Morishita K, Denbow DM, Furuse M (2008) Reverse structure of carnosine-induced sedative and hypnotic effects in the chick under acute stress. Life Sci 82:1065–1069

    Article  CAS  PubMed  Google Scholar 

  • Turkcu UO, Bilgihan A, Biberoglu G, Caglar OM (2010) Carnosine supplementation protects rat brain tissue against ethanol-induced oxidative stress. Mol Cell Biochem 339:55–61

    Article  CAS  Google Scholar 

  • Villari V, Attanasio F, Micali N (2014) Control of the structural stability of alpha-crystallin under thermal and chemical stress: the role of carnosine. J Phys Chem B 118:13770–13776

    Article  CAS  PubMed  Google Scholar 

  • Wu XH, Ding MP, Zhu-Ge ZB, Zhu YY, Jin CL, Chen Z (2006) Carnosine, a precursor of histidine, ameliorates pentylenetetrazole-induced kindled seizures in rat. Neurosci Lett 400:146–149

    Article  CAS  PubMed  Google Scholar 

  • Xie RX et al (2017) Carnosine attenuates brain oxidative stress and apoptosis after intracerebral hemorrhage in rats. Neurochem Res 42:541–551

    Article  CAS  PubMed  Google Scholar 

  • Yamano T, Niijima A, Iimori S, Tsuruoka N, Kiso Y, Nagai K (2001) Effect of l-carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-d-glucose in rats. Neurosci Lett 313:78–82

    Article  CAS  PubMed  Google Scholar 

  • Yamashita S, Sato M, Matsumoto T, Kadooka K, Hasegawa T, Fujimura T, Katakura Y (2018) Mechanisms of carnosine-induced activation of neuronal cells. Biosci Biotechnol Biochem 82:683–688

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Shi L, Zhang LR (2017) Neuroprotective effect of carnosine against salsolinol-induced Parkinson’s disease. Exp Ther Med 14:664–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YY, Zhu-Ge ZB, Wu DC, Wang S, Liu LY, Ohtsu H, Chen Z (2007) Carnosine inhibits pentylenetetrazol-induced seizures by histaminergic mechanisms in histidine decarboxylase knock-out mice. Neurosci Lett 416:211–216

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Berezhnoy.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Research involving human participants and/or animals

For this type of study formal consent is not required. In the studies involving animals all applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: B. De Courten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berezhnoy, D.S., Stvolinsky, S.L., Lopachev, A.V. et al. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions. Amino Acids 51, 139–150 (2019). https://doi.org/10.1007/s00726-018-2667-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2667-7

Keywords

Navigation