Novel, efficient, facile, and comprehensive protocol for post-column amino acid analysis of icatibant acetate containing natural and unnatural amino acids using the QbD approach

Abstract

Qualitative and quantitative determination of amino acid composition using amino acid analysis (AAA) is an important quality attribute and considered an identity of therapeutic peptide drugs by the regulatory agencies. Although huge literature is available on pre- and post- column derivatization AAA methods, arriving at an appropriate hydrolysis protocol coupled with adequate separation of the derivatized/underivatized amino acids is always challenging. Towards achieving a facile and comprehensive protocol for AAA, the present work is geared towards developing a deeper understanding of the extent of hydrolysis of peptide, and the nature and stability of amino acids present in the peptide backbone. This defines the suitability of the method in meeting the end goals and the regulatory requirement. Analysis of historical data generated during the method optimization of AAA for icatibant acetate (ICT) using head space oven hydrolysis (HSOH) and microwave-assisted hydrolysis (MAH) methods helped in arriving at fast (< 1 h) and efficient hydrolysis (0.9–1.1 of theoretical residue) conditions. Better separations for the natural and unnatural amino acids were achieved using 3.45 ≤ pH ≤ 10.85, and a column oven gradient program. This approach was useful in meeting the method quality attributes [resolution (Rs) > 2.0; plate count (N) > 5600; and USP tailing factor < 1.2] with a target analytical method profile of relative amino acid mole ratios (RAAMR) in the range of 0.9–1.1 for Ser, Oic, Tic, Hyp, Ala (Thi), Gly and Pro, and between 2.7 and 3.3 for Arg. The developed method was validated as per the ICH guidelines and is precise, accurate, linear and robust.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

AAA:

Amino acid analysis

ICT:

Icatibant acetate

HSOH:

Head space oven hydrolysis

MAH:

Microwave-assisted hydrolysis

RAAMR:

Relative amino acid mole ratios

R s :

Resolution

USP:

United States pharmacopeia

Ser:

Serine

Gly:

Glycine

Ala(thi):

Thienylalanine

Arg:

Arginine

Hyp:

Hydroxy-proline

Pro:

Proline

Oic:

Octahydro-1H-indole-2-carboxylic acid

Tic:

D-1, 2, 3, 4-Tetrahydroisoquinoline-3-carboxylic acid

TP:

Therapeutic peptides

NMR:

Nuclear magnetic resonance spectroscopy

IUPAC:

International Union of Pure and Applied Chemists

CHMP:

Committee for Medicinal Products for Human Use

Pr-CDT:

Pre-column derivatization

Po-CDT:

Post-column derivatization

RSM:

Response surface methodology

F-moc:

9-Fluorenylmethyl-chloroformate

OPA:

Orthophthalaldehyde

PITC:

Phenylisothiocyanate

Tf:

Peak tailing

Rs:

Resolution

N:

Theoretical plate count

FOM:

Figure of merit

EOH:

Extent of hydrolysis

HSGC:

Head space gas chromatography

GC:

Gas chromatography

ICH:

International Conference on Harmonization

RSD:

Relative standard deviation

References

  1. Adriaens P, Meesschaert B, Wuyts W, Vaderhaeghe H, Eyssen H (1977) Separation of ninhydrin-positive compounds on a single-column amino acid analyzer using lithium buffers. J Chromatogr 140:103–108

    PubMed  CAS  Article  Google Scholar 

  2. Akhlaghi Y, Ghaffari S, Attar H, Alamir HA (2015) A rapid hydrolysis method and DABS-Cl derivatization for complete amino acid analysis of octreotide acetate by reversed phase HPLC. Amino Acids 47(11):2255–2263

    PubMed  CAS  Article  Google Scholar 

  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    CAS  Article  Google Scholar 

  4. Blundell G, Brydon WG (1987) High performance liquid chromatography of plasma aminoacids using orthophthalaldehyde derivatisation. Clin Chim Acta 170(1):79–83

    PubMed  CAS  Article  Google Scholar 

  5. Buiarelli F, Gallo V, Di Filippo P, Pomata D, Riccardi C (2013) Development of a method for the analysis of underivatized amino acids by liquid chromatography/tandem mass spectrometry: application on Standard Reference Material 1649a (urban dust). Talanta 115:966–972

    PubMed  CAS  Article  Google Scholar 

  6. Campanella L, Crescentini G, Avino P (1999) Simultaneous determination of cysteine, cystine and 18 other amino acids in various matrices by high-performance liquid chromatography. J Chromatogr A 833(2):137–145

    PubMed  CAS  Article  Google Scholar 

  7. Chinard FP (1952) Photometric estimation of proline and ornithine. J Biol Chem 199(1):91–95

    PubMed  CAS  Google Scholar 

  8. Csapó J, Albert C, Lóki K, Csapó-Kiss Z (2008) Separation and determination of the amino acids by ion exchange column chromatography applying postcolumn derivatization. Acta Universitatis Sapientiae Alimentaria 1(5–2):9

    Google Scholar 

  9. Di L (2015) Strategic approaches to optimizing peptide ADME properties. AAPS J 17(1):134–143

    PubMed  CAS  Article  Google Scholar 

  10. Duncan M, Poljak A (1998) AAA of peptides and proteins on the femtomole scale by gas chromatography/mass spectrometry. Anal Chem 70:890–896

    PubMed  CAS  Article  Google Scholar 

  11. Eggen I, Gregg B, Verlander M, Swietlow A, Rode H, Szajek A (2014) Control strategies for synthetic therapeutic peptide APIs—part I: analytical consideration. BioPharm Int 27(3):16–21

    Google Scholar 

  12. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    PubMed  CAS  Article  Google Scholar 

  13. Fekkes D, Voskuilen-Kooyman A, Jankie R, Huijmans J (2000) Precise analysis of primary amino acids in urine by an automated high-performance liquid chromatography method: comparison with ion-exchange chromatography. J Chromatogr B Biomed Sci Appl 744(1):183–188

    PubMed  CAS  Article  Google Scholar 

  14. Fierabracci V, Masiello P, Novelli M, Bergamini E (1991) Application of amino acid analysis by high-performance liquid chromatography with phenyl isothiocyanate derivatization to the rapid determination of free amino acids in biological samples. J Chromatogr 570(2):285–291

    PubMed  CAS  Article  Google Scholar 

  15. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20(1):122–128

    PubMed  CAS  Article  Google Scholar 

  16. Friedmann M (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides and proteins to agricultural and biomedical sciences. J Agric Food Chem 52:385–406

    Article  CAS  Google Scholar 

  17. Fürst P, Pollack L, Graser TA, Godel H, Stehle P (1990) Appraisal of four pre-column derivatization methods for the high-performance liquid chromatographic determination of free amino acids in biological materials. J Chromatogr 499:557–569

    PubMed  Article  Google Scholar 

  18. Guthals A, Bandeira N (2012) Peptide identification by tandem mass spectrometry with alternate fragmentation modes. Mol Cell Proteom 11(9):550–557

    CAS  Article  Google Scholar 

  19. Heftmann E (2004) Chromatography: fundamentals and applications of chromatography and related differential migration methods—part A: fundamentals and techniques, vol 69A, 6th edn. Elsevier Science, Amsterdam, Netherlands

    Google Scholar 

  20. Hesse A, Weller MG (2016) Protein quantification by derivatization-free high-performance liquid chromatography of aromatic amino acids. J Amino Acids 2016:7374316

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Hsieh HP, Wu YT, Chen ST, Wang KT (1999) Direct solid-phase synthesis of octreotide conjugates: precursors for use as tumor-targeted radiopharmaceuticals. Bioorg Med Chem Lett 7:1797–1803

    CAS  Article  Google Scholar 

  22. ICH Q2A Text on Validation of Analytical Procedures (1995) In: International conference on harmonization of technical requirements for registration of pharmaceuticals for human use, Geneva, Switzerland, 1995

  23. Ishida Y, Fujita T, Asai K (1981) New detection and separation method for amino acids by high-performance liquid chromatography. J Chromatogr 204:143–148

    PubMed  CAS  Article  Google Scholar 

  24. Kataoka H, Tanaka H, Fujimoto A, Noguchi I, Makita M (1994) Determination of sulphur amino acids by gas chromatography with flame photometric detection. Biomed Chromatogr 8(3):119–124

    PubMed  CAS  Article  Google Scholar 

  25. Kataoka H, Matsumura S, Makita M (1997) Determination of amino acids in biological fluid by capillary gas chromatography with nitrogen phosphorus selective detection. J Pharm Biomed Anal 15:1271–1279

    PubMed  CAS  Article  Google Scholar 

  26. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26(10):2700–2707

    PubMed  CAS  Article  Google Scholar 

  27. Le Boucher J, Charret C, Coudray-Lucas C, Giboudeau J, Cynober L (1997) Amino acid determination in biological fluids by automated ion-exchange chromatography: performance of Hitachi L-8500A. Clin Chem 43(8):1421–1428

    PubMed  Google Scholar 

  28. Lewis AM, Waterhouse C, Jacob LS (1980) Whole blood and plasma amino acid analysis- Gas chromatography and ion exchange chromatography compared. Clin Chem 26(2):271–276

    PubMed  CAS  Google Scholar 

  29. Lobas AA, Verenchikov AN, Goloborodko AA, Levitsky LI, Gorshkov MV (2013) Combination of Edman degradation of peptides with liquid chromatography/mass spectrometry workflow for peptide identification in bottom-up proteomics. Rapid Commun Mass Spectrom 27(3):391–400

    PubMed  CAS  Article  Google Scholar 

  30. Matsumura S, Kataoka H, Makita M (1996) Determination of amino acids in human serum by capillary gas chromatography with nitrogen phosphorus selective detection. J Chromatogr B 681:375–380

    CAS  Article  Google Scholar 

  31. Moodie IM, Hough BJ, Labadarios D (1989) Determination of amino acids in urine by gas chromatography. J Sep Sci 12(7):437–441

    CAS  Google Scholar 

  32. Moore S, Stein WH (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J Biol Chem 176(1):367–388

    PubMed  CAS  Google Scholar 

  33. Moore S, Stein WH (1951) Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem 192(2):663–681

    PubMed  CAS  Google Scholar 

  34. Moore S, Stein WH (1958) Chromatographie determination of amino acids by the use of automatic recording equipment. Methods Enzymol 6:819–831

    Article  Google Scholar 

  35. Nakano Y, Konya Y, Taniguchi M, Fukusaki E (2017) Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. J Biosci Bioeng 123(1):134–138

    PubMed  CAS  Article  Google Scholar 

  36. Ng LT, Anderson GH (1998) Analysis of O-phthaldialdehyde precoloumn derivatized physiological amino acids. Malays Appl Biol 27(1–2):13–20

    Google Scholar 

  37. Omar MMA, Elbashir AA, Schmitz OJ (2017) Capillary electrophoresis method with UV-detection for analysis of free amino acids concentrations in food. Food Chem 214:300–307

    PubMed  CAS  Article  Google Scholar 

  38. Qureshi GA, Qureshi AR (1989) Determination of free amino acids in biological samples: problems of quantitation. J Chromatogr 491(2):281–289

    PubMed  CAS  Article  Google Scholar 

  39. Qvit N, Rubin SJS, Urban TJ, Mochly-Rosen D, Gross ER (2017) Peptidomimetic therapeutics: scientific approaches and opportunities. Drug Discov Today 22(2):454–462

    PubMed  CAS  Article  Google Scholar 

  40. Reason AJ (2003) Validation of amino acid analysis methods. Methods Mol Biol 211:181–194

    PubMed  CAS  Google Scholar 

  41. Rigas PG (2013) Post-column labeling techniques in amino acid analysis by liquid chromatography. Anal Bioanal Chem 405(25):7957–7992

    PubMed  CAS  Article  Google Scholar 

  42. Rutherfurd SM, Gilani GS (2009) Amino acid analysis. Curr Protoc Protein Sci 58(1):11.9.1–11.9.37

    Article  Google Scholar 

  43. Skelley AM, Mathies RA (2003) Chiral separation of fluorescamine-labeled amino acids using microfabricated capillary electrophoresis devices for extraterrestrial exploration. J Chromatogr A 1021:191–199

    PubMed  CAS  Article  Google Scholar 

  44. Troll W, Lindsley J (1955) A photometric method for the determination of proline. J Biol Chem 215:655–660

    PubMed  CAS  Google Scholar 

  45. Wainer A (1967) The chromatography of ninhydrin negative compounds on an amino acid analyzer column. J Chromatogr 26(1):48–53

    PubMed  CAS  Article  Google Scholar 

  46. Williamson MP (1993) Peptide structure determination by NMR. Methods Mol Biol 17:69–85

    PubMed  CAS  Google Scholar 

  47. Wu LC (2013) Regulatory considerations for peptide drug products. In: Paper presented at the 2013 GPhA/FDA CMC Workshop

  48. Xia T, Gao S, Shu C, Wen Y, Yun Y, Tao X, Chen W, Zhang F (2016) Analysis of amino acids in human blood using UHPLC-MS/MS: potential interferences of storage time and vacutainer tube in pre-analytical procedure. Clin Biochem 49(18):1372–1378

    PubMed  CAS  Article  Google Scholar 

  49. Zahou E, Jornvall H, Bergman T (2000) AAA by capillary electrophoresis after phenylthiocarbamylation. Anal Biochem 281:115–122

    PubMed  CAS  Article  Google Scholar 

  50. Zhang L, Li Y, Zhou H, Li L, Wang Y, Zhang Y (2012) Determination of eight amino acids in mice embryonic stem cells by pre-column derivatization HPLC with fluorescence detection. J Pharm Biomed Anal 66:356–358

    PubMed  CAS  Article  Google Scholar 

  51. Zhao XE, You JM, Liu HZ, Suo YR (2007) Pre-column derivatization high performance liquid chromatography tandem mass spectrometric determination of trace level of amino acids in rat serum. Chin J Anal Chem 35(7):938–944

    CAS  Article  Google Scholar 

  52. Zhong H, Marcus SL, Li L (2005) Microwave-assisted acid hydrolysis of proteins combined with liquid chromatography MALDI MS/MS for protein identification. J Am Soc Mass Spectrom 16(4):471–481

    PubMed  CAS  Article  Google Scholar 

  53. Zunić G, Spasić S (2008) Capillary electrophoresis method optimized with a factorial design for the determination of glutathione and amino acid status using human capillary blood. J Chromatogr B Anal Technol Biomed Life Sci 873(1):70–76

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Two of the authors (KYKK and DVGR) thank the management of Dr. Reddy’s Laboratories Ltd., Hyderabad, India, for supporting this work. Support from colleagues in Research and Development, and Analytical Research and Development of Dr. Reddy’s Laboratories Ltd. is appreciated.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yagnakirankumar Komaravolu.

Ethics declarations

Conflict of interest

The authors Yagnakirankumar Komaravolu, Venugopala Rao Dama, and Thirumala Chary Maringanti declare that they have no conflicts of interest.

Ethical statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: F. Albericio.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Komaravolu, Y., Dama, V.R. & Maringanti, T.C. Novel, efficient, facile, and comprehensive protocol for post-column amino acid analysis of icatibant acetate containing natural and unnatural amino acids using the QbD approach. Amino Acids 51, 295–309 (2019). https://doi.org/10.1007/s00726-018-2665-9

Download citation

Keywords

  • Post-column derivatization
  • Amino acid analysis
  • Quality by design
  • ICT
  • Ninhydrin
  • Unnatural amino acids