Abstract
No antimicrobial peptide has been identified in cephalopods to date. Annotation of transcriptomes or genomes using basic local alignment Search Tool failed to yield any from sequence identities. Therefore, we searched for antimicrobial sequences in the cuttlefish (Sepia officinalis) database by in silico analysis of a transcriptomic database. Using an original approach based on the analysis of cysteine-free antimicrobial peptides selected from our Antimicrobial Peptide Database (APD3), the online prediction tool of the Collection of Anti-Microbial Peptides (CAMPR3), and a homemade software program, we identified potential antibacterial sequences. Nine peptides less than 25 amino acids long were synthesized. The hydrophobic content of all nine of them ranged from 30 to 70%, and they could form alpha-helices. Three peptides possessed similarities with piscidins, one with BMAP-27, and five were totally new. Their antibacterial activity was evaluated on eight bacteria including the aquatic pathogens Vibrio alginolyticus, Aeromonas salmonicida, or human pathogens such as Salmonella typhimurium, Listeria monocytogenes, or Staphylococcus aureus. Despite the prediction of an antimicrobial potential for eight of the peptides, only two—GR21 and KT19—inhibited more than one bacterial strain with minimal inhibitory concentrations below 25 µM. Some sequences like VA20 and FK19 were hemolytic, while GR21 induced less than 10% of hemolysis on human blood cells at a concentration of 200 µM. GR21 was the only peptide derived from a precursor with a signal peptide, suggesting a real role in cuttlefish immune defense.
This is a preview of subscription content, access via your institution.





References
Agerberth B, Lee J-Y, Bergman T et al (1991) Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem 202:849–854. https://doi.org/10.1111/j.1432-1033.1991.tb16442.x
Andreu D, Ubach J, Boman A et al (1992) Shortened cecropin A-melittin hybrids significant size reduction retains potent antibiotic activity. FEBS Lett 296:190–194. https://doi.org/10.1016/0014-5793(92)80377-S
Bachère E, Gueguen Y, Gonzalez M et al (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168
Bechinger B, Zasloff M, Opella SJ (1993) Structure and orientation of the antibiotic peptide magainin in membranes by solid-state nuclear magnetic resonance spectroscopy. Protein Sci 2:2077–2084. https://doi.org/10.1002/pro.5560021208
Boman HG (2003) Antibacterial peptides: basic facts and emerging concepts. J Intern Med 254:197–215. https://doi.org/10.1046/j.1365-2796.2003.01228.x
Brown KL, Hancock RE (2006) Cationic host defense (antimicrobial) peptides. Curr Opin Immunol 18:24–30. https://doi.org/10.1016/j.coi.2005.11.004
Campagna S, Saint N, Molle G, Aumelas A (2007) Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 46:1771–1778. https://doi.org/10.1021/bi0620297
Carmona G, Rodriguez A, Juarez D et al (2013) Improved protease stability of the antimicrobial peptide pin2 substituted with d-amino acids. Protein J 32:456–466. https://doi.org/10.1007/s10930-013-9505-2
Castillo MG, Salazar KA, Joffe NR (2015) Fish & shell fish immunology the immune response of cephalopods from head to foot. Fish Shellfish Immunol 46:145–160. https://doi.org/10.1016/j.fsi.2015.05.029
Čeřovský V, Slaninová J, Fučík V et al (2008) New potent antimicrobial peptides from the venom of Polistinae wasps and their analogs. Peptides 29:992–1003. https://doi.org/10.1016/j.peptides.2008.02.007
Chen HC, Brown JH, Morell JL, Huang CM (1988) Synthetic magainin analogs with improved antimicrobial activity. FEBS Lett 236:462–466
Cho JH, Sung BH, Kim SC (2009) Buforins: histone H2A-derived antimicrobial peptides from toad stomach. Biochim Biophys Acta Biomembr 1788:1564–1569. https://doi.org/10.1016/j.bbamem.2008.10.025
Cornet V, Henry J, Corre E et al (2014) Dual role of the cuttlefish salivary proteome in defense and predation. J Proteom 108:209–222. https://doi.org/10.1016/j.jprot.2014.05.019
Cornet V, Henry J, Corre E et al (2015a) The Toll/NF-κB pathway in cuttlefish symbiotic accessory nidamental gland. Dev Comp Immunol 53:42–46. https://doi.org/10.1016/j.dci.2015.06.016
Cornet V, Henry J, Goux D et al (2015b) How egg case proteins can protect cuttlefish offspring? PLoS One. https://doi.org/10.1371/journal.pone.0132836
Cornet V, Henry J, Goux D et al (2015c) How egg case proteins can protect cuttlefish offspring? PLoS One 10:e0132836. https://doi.org/10.1371/journal.pone.0132836
De Zoysa M, Whang I, Lee Y et al (2010) Defensin from disk abalone Haliotis discus discus: molecular cloning, sequence characterization and immune response against bacterial infection. Fish Shellfish Immunol 28:261–266. https://doi.org/10.1016/j.fsi.2009.11.005
Destoumieux-Garzón D, Rosa RD, Schmitt P et al (2016) Antimicrobial peptides in marine invertebrate health and disease. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2015.0300
Dolashka P, Moshtanska V, Borisova V et al (2011) Antimicrobial proline-rich peptides from the hemolymph of marine snail Rapana venosa. Peptides 32:1477–1483. https://doi.org/10.1016/j.peptides.2011.05.001
Dolashka P, Dolashki A, Van Beeumen J et al (2016) Antimicrobial activity of molluscan hemocyanins from helix and Rapana snails. Curr Pharm Biotechnol 17:263–270
Dubos RJ, Cattaneo C (1939) Studies on a bactericidal agent extracted from a soil Bacillus: iii. Preparation and activity of a protein-free fraction. J Exp Med 70:249–256. https://doi.org/10.1084/jem.70.3.249
Duval E, Zatylny C, Laurencin M et al (2009) KKKKPLFGLFFGLF: a cationic peptide designed to exert antibacterial activity. Peptides 30:1608–1612. https://doi.org/10.1016/j.peptides.2009.06.022
Gautier R, Douguet D, Antonny B, Drin G (2008) HELIQUEST: a web server to screen sequences with specific α-helical properties. Bioinformatics 24:2101–2102. https://doi.org/10.1093/bioinformatics/btn392
Gerdol M, De Moro G, Manfrin C et al (2012) Big defensins and mytimacins, new AMP families of the Mediterranean mussel Mytilus galloprovincialis. Dev Comp Immunol 36:390–399. https://doi.org/10.1016/j.dci.2011.08.003
Gómez EA, Giraldo P, Orduz S (2017) InverPep: a database of invertebrate antimicrobial peptides. J Glob Antimicrob Resist 8:13–17. https://doi.org/10.1016/j.jgar.2016.10.003
Grau-Campistany A, Strandberg E, Wadhwani P et al (2015) Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells. Sci Rep 5:20–24. https://doi.org/10.1038/srep09388
Hammami R, Zouhir A, Le Lay C et al (2010) BACTIBASE second release: a database and tool platform for bacteriocin characterization. BMC Microbiol 10:22. https://doi.org/10.1186/1471-2180-10-22
Hancock RE, Diamond G (2000) The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol 8:402–410. https://doi.org/10.1016/S0966-842X(00)01823-0
Hancock RE, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88. https://doi.org/10.1016/S0167-7799(97)01156-6
Hancock REW, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557. https://doi.org/10.1038/nbt1267
Hanif Waghu F, Shankar Barai R, Gurung P, Idicula-Thomas S (2016) CAMP R3: a database on sequences, structures and signatures of antimicrobial peptides. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1051
Harder J, Bartels J, Christophers E, Schröder J-M (1997) A peptide antibiotic from human skin. Nature 387:861. https://doi.org/10.1038/43088
Hetru C, Bulet P (1997) Strategies for the isolation and characterization of antimicrobial peptides of invertebrates. Methods Mol Biol 78:35–49. https://doi.org/10.1385/0-89603-408-9:35
Hiemstra PS, Zaat SAJ (eds) (2013) Antimicrobial peptides and innate immunity. Springer Basel, Basel
Hoover DM, Rajashankar KR, Blumenthal R et al (2000) The structure of human β-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 275:32911–32918. https://doi.org/10.1074/jbc.M006098200
Hotchkiss R, Dubos RJ (1940) Letters to the editors letters to the editors. Br J Nutr 63:669–671
Houyvet B, Bouchon-Navaro Y, Bouchon C et al (2018) Identification of a moronecidin-like antimicrobial peptide in the venomous fish Pterois volitans: functional and structural study of pteroicidin-α. Fish Shellfish Immunol 72:318–324. https://doi.org/10.1016/j.fsi.2017.11.003
Konno K, Hisada M, Naoki H et al (2006) Eumenitin, a novel antimicrobial peptide from the venom of the solitary eumenine wasp Eumenes rubronotatus. Peptides 27:2624–2631. https://doi.org/10.1016/j.peptides.2006.04.013
Kremer N, Schwartzman J, Augustin R et al (2014) The dual nature of haemocyanin in the establishment and persistence of the squid—vibrio symbiosis the dual nature of haemocyanin in the establishment and persistence of the squid—vibrio symbiosis. Proc R Soc Biol Sci. https://doi.org/10.5061/dryad.cq032
Landon C, Sodano P, Hetru C et al (1997) Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci 6:1878–1884. https://doi.org/10.1002/pro.5560060908
Lauth X, Shike H, Burns JC et al (2002) Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J Biol Chem 277:5030–5039. https://doi.org/10.1074/jbc.M109173200
Lauth X, Babon JJ, Stannard JA et al (2005) Bass hepcidin synthesis, solution structure, antimicrobial activities and synergism, and in vivo hepatic response to bacterial infections. J Biol Chem 280:9272–9282. https://doi.org/10.1074/jbc.M411154200
Lee IH, Cho Y, Lehrer RI (1997) Styelins, broad-spectrum antimicrobial peptides from the solitary tunicate, Styela clava. Comp Biochem Physiol Part B Biochem Mol Biol 118:515–521. https://doi.org/10.1016/S0305-0491(97)00109-0
Lee SY, Lee BL, Söderhäll K (2003) Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. J Biol Chem 278:7927–7933. https://doi.org/10.1074/jbc.M209239200
Lee W-H, Li Y, Lai R et al (2005) Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification. Eur J Immunol 35:1220–1229. https://doi.org/10.1002/eji.200425615
Lin W, Chien Y, Pan C et al (2009) Epinecidin-1, an antimicrobial peptide from fish (Epinephelus coioides) which has an antitumor effect like lytic peptides in human fibrosarcoma cells. Peptides 30:283–290. https://doi.org/10.1016/j.peptides.2008.10.007
Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532. https://doi.org/10.1056/NEJM199808203390806
Marquis H, Drevets DA, Bronze MS et al (2015) Pathogenesis of Listeria monocytogenes in humans. Hum Emerg Re-emerg Infect Bact Mycotic Infect 1(1):749–772. https://doi.org/10.1002/9781118644843.ch40
Menanteau-Ledouble S, Kumar G, Saleh M, El-Matbouli M (2016) Aeromonas salmonicida: updates on an old acquaintance. Dis Aquat Organ 120:49–68. https://doi.org/10.3354/dao03006
Miao J, Guo H, Chen F et al (2016) Antibacterial effects of a cell-penetrating peptide isolated from Kefir. J Agric Food Chem 64:3234–3242. https://doi.org/10.1021/acs.jafc.6b00730
Micsonai A, Wien F, Kernya L et al (2015) Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc Natl Acad Sci 112:E3095–E3103. https://doi.org/10.1073/pnas.1500851112
Mitta G, Vandenbulcke F, Noël T et al (2000) Differential distribution and defence involvement of antimicrobial peptides in mussel. J Cell Sci 113(Pt 1):2759–2769
Mura M, Wang J, Zhou Y et al (2016) The effect of amidation on the behaviour of antimicrobial peptides. Eur Biophys J 45:195–207
Robinette D, Wada S, Arroll T et al (1998) Antimicrobial activity in the skin of the channel catfish Ictalurus punctatus: characterization of broad-spectrum histone-like antimicrobial proteins. Cell Mol Life Sci 54:467–475. https://doi.org/10.1007/s000180050175
Rozek T, Wegener KL, Bowie JH et al (2000) The antibiotic and anticancer active aurein peptides from the Australian Bell Frogs Litoria aurea and Litoria raniformis. Eur J Biochem 267:5330–5341. https://doi.org/10.1046/j.1432-1327.2000.01536.x
Sangster CR, Smolowitz RM (2003) Description of Vibrio alginolyticus infection in cultured Sepia officinalis, Sepia apama, and Sepia pharaonis. Biol Bull 205:233–234. https://doi.org/10.2307/1543270
Seebah S, Suresh A, Zhuo S et al (2007) Defensins knowledgebase: a manually curated database and information source focused on the defensins family of antimicrobial peptides. Nucleic Acids Res 35:265–268. https://doi.org/10.1093/nar/gkl866
Sharma A, Rishi P, Gautam A et al (2015) In vitro and in silico comparative evaluation of anti-Acinetobacter baumannii peptides. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1508.08064
Silphaduang U, Noga EJ (2001) Peptide antibiotics in mast cells of fish. Nature 414:268–269. https://doi.org/10.1038/35104690
Simmaco M, Mignogna G, Canofeni S et al (1996) Temporins, antimicrobial peptides from the European Red Frog Rana temporaria. Eur J Biochem 242:788–792. https://doi.org/10.1111/j.1432-1033.1996.0788r.x
Skerlavaj B, Gennaro R, Bagella L et al (1996) Biological characterization of two novel cathelicidin-derived peptides and identification of structural requirements for their antimicrobial and cell lytic activities. J Biol Chem 271:28375–28381
Steiner I (1982) Secondary structure of the cecropins: antibacterial peptides from the moth. FEBS Lett 137:283–287
Strandberg E, Zerweck J, Horn D et al (2015) Influence of hydrophobic residues on the activity of the antimicrobial peptide magainin 2 and its synergy with PGLa. J Pept Sci 21:436–445. https://doi.org/10.1002/psc.2780
Sun BJ, Xie HX, Song Y, Nie P (2007) Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that moronecidins and pleurocidins belong in one family: the piscidins. J Fish Dis 30:335–343. https://doi.org/10.1111/j.1365-2761.2007.00789.x
Tareq FS, Lee MA, Lee H et al (2014) Gageotetrins A−C, noncytotoxic antimicrobial linear lipopeptides from a marine Bacterium Bacillus subtilis. Org Lett 16:13–16. https://doi.org/10.3390/md12020871
Thomas S, Karnik S, Barai RS et al (2010) CAMP: a useful resource for research on antimicrobial peptides. Nucleic Acids Res 38:D774–D780. https://doi.org/10.1093/nar/gkp1021
Vila-Farres X, Garcia de la Maria C, López-Rojas R et al (2012) In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clin Microbiol Infect 18:383–387. https://doi.org/10.1111/j.1469-0691.2011.03581.x
Wang Z, Wang G (2004) APD: the antimicrobial peptide database. Nucleic Acids Res 32:D590–D592. https://doi.org/10.1093/nar/gkh025
Wang G, Li X, Wang Z (2016) APD3: the antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. https://doi.org/10.1093/nar/gkv1278
Yeaman MR (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55. https://doi.org/10.1124/pr.55.1.2
Zannella C, Mosca F, Mariani F et al (2017) Microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense. Mar Drugs. https://doi.org/10.3390/md15060182
Zasloff M (1987) Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA 84:5449–5453. https://doi.org/10.1097/00043764-198806000-00004
Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395. https://doi.org/10.1038/415389a
Zatylny-Gaudin C, Cornet V, Leduc A et al (2016) Neuropeptidome of the Cephalopod Sepia officinalis: identification, tissue mapping, and expression pattern of neuropeptides and neurohormones during egg laying. J Proteome Res 15:48–67. https://doi.org/10.1021/acs.jproteome.5b00463
Zelezetsky I, Tossi A (2006) Alpha-helical antimicrobial peptides—using a sequence template to guide structure—activity relationship studies. Biochim Biophys Acta Biomembr 1758:1436–1449. https://doi.org/10.1016/j.bbamem.2006.03.021
Zhong J, Wang W, Yang X et al (2013) A novel cysteine-rich antimicrobial peptide from the mucus of the snail of Achatina fulica. Peptides 39:1–5. https://doi.org/10.1016/j.peptides.2012.09.001
Zhuang J, Coates CJ, Zhu H et al (2015) Identification of candidate antimicrobial peptides derived from abalone hemocyanin. Dev Comp Immunol 49:96–102. https://doi.org/10.1016/j.dci.2014.11.008
Acknowledgements
We are thankful to the “Région NORMANDIE” for funding this work. We thank EFS (Etablissement Français du sang) for human blood sample. We thank the Optical spectroscopy platform at the Center for Molecular Biophysics CNRS Orléans for the CD analyses.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing financial interest.
Informed consent
The manuscript was written through contributions of all authors. All authors have given approval of the final version of the manuscript.
Ethical statement
The article does not contain any studies in patients by any of the authors. This article contains studies with human or animal subjects that are all approved of by the Ethics Committee.
Additional information
Handling Editor: N. Sewald.
Electronic supplementary material
Below is the link to the electronic supplementary material.
726_2018_2633_MOESM1_ESM.xlsx
Supplementary material List of the 811 AMPs From APD database use for the design of AMP from cuttlefish transcriptome 1 (XLSX 54 kb)
Rights and permissions
About this article
Cite this article
Houyvet, B., Zanuttini, B., Corre, E. et al. Design of antimicrobial peptides from a cuttlefish database. Amino Acids 50, 1573–1582 (2018). https://doi.org/10.1007/s00726-018-2633-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00726-018-2633-4
Keywords
- Antimicrobial peptides
- Design
- Sepia officinalis
- Transcriptome
- Predictive tools