Skip to main content

Advertisement

Log in

Diet-induced hyperhomocysteinemia impairs vasodilation in 5/6-nephrectomized rats

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Plasma homocysteine is elevated in patients with impaired renal function, and markedly so at end-stage renal disease. As chronic kidney disease and hyperhomocysteinemia are also independent risk factors for cardiovascular disease, the latter is hypothesized to accelerate vascular abnormalities following renal failure. This study aimed to investigate the combined effect of impaired renal function and hyperhomocysteinemia on vascular function. We show that in 5/6-nephrectomized rats, a model of chronic kidney disease, a methionine-rich diet for 8 weeks induces moderate hyperhomocysteinemia, exacerbates hypertension, and attenuates the vascular response to acetylcholine, sodium nitroprusside, 8-bromo-cGMP, and isoprenaline. However, plasma nitrate/nitrite and total NOS activity in the thoracic aorta were not affected. Collectively, the data imply that hyperhomocysteinemia and end-stage renal disease synergistically impair endothelium-dependent and endothelium-independent vasodilatation by blocking the cGMP/protein kinase G and/or cAMP/protein kinase A pathways. 5/6-Nephrectomized rat with hyperhomocysteinemia induced by a methionine-rich diet would be a useful model for elucidating the pathogenesis of vascular impairment in patients with end-stage renal disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhalodia YS, Sheth NR, Vaghasiya JD, Jivani NP (2011) Homocysteine-dependent endothelial dysfunction induced by renal ischemia/reperfusion injury. J Nephrol 24:631–635

    Article  PubMed  CAS  Google Scholar 

  • Blom HJ (2000) Genetic determinants of hyperhomocysteinaemia: the roles of cystathionine beta-synthase and 5,10-methylenetetrahydrofolate reductase. Eur J Pediatr 159(Suppl 3):S208–S212

    Article  PubMed  CAS  Google Scholar 

  • Bostom AG, Culleton BF (1999) Hyperhomocysteinemia in chronic renal disease. J Am Soc Nephrol 10:891–900

    PubMed  CAS  Google Scholar 

  • Chen CH, Yang WC, Hsiao YH, Huang SC, Huang YC (2016) High homocysteine, low vitamin B-6, and increased oxidative stress are independently associated with the risk of chronic kidney disease. Nutrition 32:236–241

    Article  PubMed  CAS  Google Scholar 

  • Chronic Kidney Disease Prognosis C et al (2010) Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet 375:2073–2081

    Article  Google Scholar 

  • Drueke TB, Massy ZA (2010) Atherosclerosis in CKD: differences from the general population. Nat Rev Nephrol 6:723–735

    Article  PubMed  Google Scholar 

  • Fischer PA, Dominguez GN, Cuniberti LA, Martinez V, Werba JP, Ramirez AJ, Masnatta LD (2003) Hyperhomocysteinemia induces renal hemodynamic dysfunction: is nitric oxide involved? J Am Soc Nephrol 14:653–660

    Article  PubMed  CAS  Google Scholar 

  • Flacco N et al (2013) Different beta-adrenoceptor subtypes coupling to cAMP or NO/cGMP pathways: implications in the relaxant response of rat conductance and resistance vessels. Br J Pharmacol 169:413–425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Francis ME, Eggers PW, Hostetter TH, Briggs JP (2004) Association between serum homocysteine and markers of impaired kidney function in adults in the United States. Kidney Int 66:303–312

    Article  PubMed  CAS  Google Scholar 

  • Friedman AN, Bostom AG, Selhub J, Levey AS, Rosenberg IH (2001) The kidney and homocysteine metabolism. J Am Soc Nephrol 12:2181–2189

    PubMed  CAS  Google Scholar 

  • Gewaltig MT, Kojda G (2002) Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc Res 55:250–260

    Article  PubMed  CAS  Google Scholar 

  • Guerin AP, Pannier B, Marchais SJ, London GM (2008) Arterial structure and function in end-stage renal disease. Curr Hypertens Rep 10:107–111

    Article  PubMed  Google Scholar 

  • Hasdan G, Benchetrit S, Rashid G, Green J, Bernheim J, Rathaus M (2002) Endothelial dysfunction and hypertension in 5/6 nephrectomized rats are mediated by vascular superoxide. Kidney Int 61:586–590

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Matsukawa T, Shinohara Y, Hashimoto T (2000) Assessment of the metabolic chiral inversion of d-leucine in rat by gas chromatography–mass spectrometry combined with a stable isotope dilution analysis. Drug Metab Dispos 28:920–924

    PubMed  CAS  Google Scholar 

  • Hasegawa H, Shinohara Y, Akahane K, Hashimoto T (2005) Direct detection and evaluation of conversion of d-methionine into l-methionine in rats by stable isotope methodology. J Nutr 135:2001–2005

    Article  PubMed  CAS  Google Scholar 

  • Himmelfarb J, McMenamin E, McMonagle E (2002) Plasma aminothiol oxidation in chronic hemodialysis patients. Kidney Int 61:705–716

    Article  PubMed  CAS  Google Scholar 

  • Hoffer LJ, Robitaille L, Elian KM, Bank I, Hongsprabhas P, Mamer OA (2001) Plasma reduced homocysteine concentrations are increased in end-stage renal disease. Kidney Int 59:372–377

    Article  PubMed  CAS  Google Scholar 

  • Jaradat MI, Molitoris BA (2002) Cardiovascular disease in patients with chronic kidney disease. Semin Nephrol 22:459–473

    Article  PubMed  Google Scholar 

  • Jardine MJ et al (2012) The effect of folic acid based homocysteine lowering on cardiovascular events in people with kidney disease: systematic review and meta-analysis. BMJ 344:e3533

    Article  PubMed  PubMed Central  Google Scholar 

  • Joseph J, Washington A, Joseph L, Koehler L, Fink LM, Hauer-Jensen M, Kennedy RH (2002) Hyperhomocysteinemia leads to adverse cardiac remodeling in hypertensive rats. Am J Physiol Heart Circ Physiol 283:H2567–H2574

    Article  PubMed  CAS  Google Scholar 

  • Kobuchi S et al (2014) Involvement of renal sympathetic nerve overactivation in the progression of chronic kidney disease in rats. J Cardiovasc Pharmacol 63:9–15

    Article  PubMed  CAS  Google Scholar 

  • Koomans HA, Blankestijn PJ, Joles JA (2004) Sympathetic hyperactivity in chronic renal failure: a wake-up call. J Am Soc Nephrol 15:524–537

    Article  PubMed  Google Scholar 

  • Lentz SR, Sobey CG, Piegors DJ, Bhopatkar MY, Faraci FM, Malinow MR, Heistad DD (1996) Vascular dysfunction in monkeys with diet-induced hyperhomocyst(e)inemia. J Clin Invest 98:24–29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levi A, Cohen E, Levi M, Goldberg E, Garty M, Krause I (2014) Elevated serum homocysteine is a predictor of accelerated decline in renal function and chronic kidney disease: a historical prospective study. Eur J Intern Med 25:951–955

    Article  PubMed  CAS  Google Scholar 

  • Liu X et al (2009) Proteomic analysis of homocysteine induced proliferation of cultured neonatal rat vascular smooth muscle cells. Biochim Biophys Acta 1794:177–184

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Li XC, Lu L, Cao Y, Sun RR, Chen S, Zhang PY (2014) Cardiovascular disease and its relationship with chronic kidney disease. Eur Rev Med Pharmacol Sci 18:2918–2926

    PubMed  CAS  Google Scholar 

  • Liu B et al (2016) A novel rat model of heart failure induced by high methionine diet showing evidence of association between hyperhomocysteinemia and activation of NF-kappaB. Am J Transl Res 8:117–124

    PubMed  PubMed Central  CAS  Google Scholar 

  • Loria AS, Brinson KN, Fox BM, Sullivan JC (2014) Sex-specific alterations in NOS regulation of vascular function in aorta and mesenteric arteries from spontaneously hypertensive rats compared to Wistar Kyoto rats. Physiol Rep 2:e12125

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Majors A, Ehrhart LA, Pezacka EH (1997) Homocysteine as a risk factor for vascular disease. Enhanced collagen production and accumulation by smooth muscle cells. Arterioscler Thromb Vasc Biol 17:2074–2081

    Article  PubMed  CAS  Google Scholar 

  • Matthias D, Becker CH, Riezler R, Kindling PH (1996) Homocysteine induced arteriosclerosis-like alterations of the aorta in normotensive and hypertensive rats following application of high doses of methionine. Atherosclerosis 122:201–216

    Article  PubMed  CAS  Google Scholar 

  • McCully KS (1996) Homocysteine and vascular disease. Nat Med 2:386–389

    Article  PubMed  CAS  Google Scholar 

  • Mendes RH et al (2014) Moderate hyperhomocysteinemia provokes dysfunction of cardiovascular autonomic system and liver oxidative stress in rats. Auton Neurosci 180:43–47

    Article  PubMed  CAS  Google Scholar 

  • Miyajima A, Bamba M, Muto T, Hirota T (2015) Dysfunction of blood pressure regulation in hyperhomocysteinemia model in rats. J Toxicol Sci 40:211–221

    Article  PubMed  CAS  Google Scholar 

  • Moody WE, Edwards NC, Madhani M, Chue CD, Steeds RP, Ferro CJ, Townend JN (2012) Endothelial dysfunction and cardiovascular disease in early-stage chronic kidney disease: cause or association? Atherosclerosis 223:86–94

    Article  PubMed  CAS  Google Scholar 

  • Pacurari M, Xing D, Hilgers RH, Guo YY, Yang Z, Hage FG (2013) Endothelial cell transfusion ameliorates endothelial dysfunction in 5/6 nephrectomized rats. Am J Physiol Heart Circ Physiol 305:H1256–H1264

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palit S, Chonchol M, Cheung AK, Kaufman J, Smits G, Kendrick J (2015) Association of BP with death, cardiovascular events, and progression to chronic dialysis in patients with advanced kidney disease. Clin J Am Soc Nephrol 10:934–940

    Article  PubMed  PubMed Central  Google Scholar 

  • Pexa A, Herrmann M, Taban-Shomal O, Henle T, Deussen A (2009) Experimental hyperhomocysteinaemia: differences in tissue metabolites between homocystine and methionine feeding in a rat model. Acta Physiol (Oxf) 197:27–34

    Article  CAS  Google Scholar 

  • Pietrzik K, Bronstrup A (1998) Vitamins B12, B6 and folate as determinants of homocysteine concentration in the healthy population. Eur J Pediatr 157(Suppl 2):S135–S138

    Article  PubMed  CAS  Google Scholar 

  • Podjarny E, Benchetrit S, Rathaus M, Pomeranz A, Rashid G, Shapira J, Bernheim J (2003) Effect of tetrahydrobiopterin on blood pressure in rats after subtotal nephrectomy. Nephron Physiol 94:6–9

    Article  CAS  Google Scholar 

  • Radenkovic M, Stojanovic M, Prostran M (2016) Endothelial dysfunction in renal failure: current update. Curr Med Chem 23:2047–2054

    Article  PubMed  CAS  Google Scholar 

  • Robin S, Maupoil V, Groubatch F, Laurant P, Jacqueson A, Berthelot A (2003) Effect of a methionine-supplemented diet on the blood pressure of Wistar-Kyoto and spontaneously hypertensive rats. Br J Nutr 89:539–548

    Article  PubMed  CAS  Google Scholar 

  • Schiffrin EL, Lipman ML, Mann JF (2007) Chronic kidney disease: effects on the cardiovascular system. Circulation 116:85–97

    Article  PubMed  Google Scholar 

  • Shankar A, Wang JJ, Chua B, Rochtchina E, Flood V, Mitchell P (2008) Positive association between plasma homocysteine level and chronic kidney disease. Kidney Blood Press Res 31:55–62

    Article  PubMed  CAS  Google Scholar 

  • Sharma S, Singh M, Sharma PL (2013) Mechanism of hyperhomocysteinemia-induced vascular endothelium dysfunction—possible dysregulation of phosphatidylinositol-3-kinase and its downstream phosphoinositide dependent kinase and protein kinase B. Eur J Pharmacol 721:365–372

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Hasegawa H, Tagoku K, Hashimoto T (2001) Simultaneous determination of methionine and total homocysteine in human plasma by gas chromatography-mass spectrometry. J Chromatogr B Biomed Sci Appl 758:283–288

    Article  PubMed  CAS  Google Scholar 

  • Shinohara Y, Hasegawa H, Kaneko T, Tamura Y, Hashimoto T, Ichida K (2010) Analysis of [2H7]methionine, [2H4]methionine, methionine, [2H4]homocysteine and homocysteine in plasma by gas chromatography-mass spectrometry to follow the fate of administered [2H7]methionine. J Chromatogr B Analyt Technol Biomed Life Sci 878:417–422

    Article  PubMed  CAS  Google Scholar 

  • Soria C, Chadefaux B, Coude M, Gaillard O, Kamoun P (1990) Concentrations of total homocysteine in plasma in chronic renal failure. Clin Chem 36:2137–2138

    PubMed  CAS  Google Scholar 

  • Spradley FT, White JJ, Paulson WD, Pollock DM, Pollock JS (2013) Differential regulation of nitric oxide synthase function in aorta and tail artery from 5/6 nephrectomized rats. Physiol Rep 1:e00145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Taes YE, Delanghe JR, De Vriese AS, Rombaut R, Van Camp J, Lameire NH (2003) Creatine supplementation decreases homocysteine in an animal model of uremia. Kidney Int 64:1331–1337

    Article  PubMed  CAS  Google Scholar 

  • Vaziri ND, Ni Z, Wang XQ, Oveisi F, Zhou XJ (1998) Downregulation of nitric oxide synthase in chronic renal insufficiency: role of excess PTH. Am J Physiol 274:F642–F649

    PubMed  CAS  Google Scholar 

  • Wu CC, Zheng CM, Lin YF, Lo L, Liao MT, Lu KC (2012) Role of homocysteine in end-stage renal disease. Clin Biochem 45:1286–1294

    Article  PubMed  CAS  Google Scholar 

  • Yan TT et al (2010) Homocysteine impaired endothelial function through compromised vascular endothelial growth factor/Akt/endothelial nitric oxide synthase signalling. Clin Exp Pharmacol Physiol 37:1071–1077

    Article  PubMed  CAS  Google Scholar 

  • Yen CH, Lau YT (2002) Vascular responses in male and female hypertensive rats with hyperhomocysteinemia. Hypertension 40:322–328

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported in part by JSPS KAKENHI (Grant Numbers 26460207, 17K08428, 18K08224), National Basic Research Program of China (Grant Number 2015CB554405), and National Natural Science Foundation of China (Grant Number 81603335).

Author information

Authors and Affiliations

Authors

Contributions

LL, HH, NI, and WY conceived and designed experiments. LL and HH performed experiments and analyzed data. LL, HH, JL, and DC prepared the manuscript; KI contributed reagents/material/analyses tools. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kimiyoshi Ichida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Handling Editor: H. Jakubowski.

Lei Li and Hiroshi Hasegawa are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Hasegawa, H., Inaba, N. et al. Diet-induced hyperhomocysteinemia impairs vasodilation in 5/6-nephrectomized rats. Amino Acids 50, 1485–1494 (2018). https://doi.org/10.1007/s00726-018-2626-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2626-3

Keywords

Navigation